بررسی رفتار شمع منفرد و گروه شمع مستقر بر رأس شیروانی ماسه‌ای تحت بارگذاری کششی

نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 گروه مهندسی عمران ، واحد اهواز، دانشگاه آزاد اسلامی، اهواز

2 گروه مهندسی عمران، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد

10.22034/ceej.2024.61105.2343

چکیده

درک رفتار گروه شمع مجاور شیروانی عامل مهمی در طراحی سازه­ های بلند مجاور شیروانی است. در خصوص رفتار گروه شمع مجاور شیروانی تحت بارگذاری قائم تحقیقات بسیار کمی صورت پذیرفته است. لذا مطالعه در خصوص رفتار گروه شمع مجاور شیروانی تحت بارگذاری محوری از اهمیت خاصی برخوردار است. هدف از این تحقیق بررسی ظرفیت باربری و ضریب راندمان کششی گروه شمع قائم تحت بارگذاری محوری واقع در رأس شیروانی ماسه ­ای به ­کمک آزمایش­ های مدل فیزیکی می‌باشد به این منظور یک سری آزمایش­ های مدل فیزیکی با بارگذاری کششی بر روی شمع منفرد و گروه­ های شمع 2×2 ،1×2، 1×3 و 3×3 واقع در رأس شیروانی ماسه ­ای خشک انجام‌ گرفته و اثر عوامل مختلفی همانند فاصله اثر تراکم خاک، طول مدفون شمع ­ها ، جهت قرارگیری گروه شمع خطی نسبت به رأس شیروانی و فاصله گروه شمع از رأس شیروانی بر روی ظرفیت باربری و ضریب راندمان کششی گروه شمع مورد بررسی قرار گرفت. نتایج حاصل از آزمایش های مدل فیزیکی نشان می‌دهد، ظرفیت باربری و ضریب راندمان کششی گروه شمع به عواملی همانند فاصله شمع ها  از رأس شیروانی، تعداد شمع­ ها و نحوه قرارگیری گروه شمع خطی نسبت به رأس شیروانی بستگی دارد. نتایج آزمایش­ های مدل فیزیکی نشان می‌دهد که ضریب راندمان گروه شمع در تراکم­ ها و طول­ های مدفون مختلف شمع˛ با افزایش تعداد شمع ­ها کاهش مییابد. با افزایش طول مدفون شمع و تراکم نسبی خاک اثر جهت قرارگیری گروه خطی 1×2 و 1×3 نسبت به رأس شیروانی بر روی ظرفیت باربری کششی و ضریب راندمان گروه شمع کاهش می­یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the Behavior of Single Pile and Adjacent Pile Group of Sandy Slope under Uplift Loading

نویسندگان [English]

  • Reza Mohammad Alinejad 1
  • Meysam Bayat 2
1 Department of Civil Engineering, Ahwaz Branch, Islamic Azad University, Ahwaz, Iran
2 Department of Civil Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
چکیده [English]

The pile is commonly adopted to transfer a part of the building and civil engineering structural loads into deeper layers with higher stiffness and thereby allow the reduction of total settlement and differential settlement of structures in a very economical way. Piles are often used in groups and the load transfer mechanism in group piles is generally different from that of a single pile due to the pile-soil and pile-pile interaction effects which has been described by previous researchers. Previous studies indicated that the interaction between soil and structure has a significant effect on the responses of foundation and structure. In the past researches, various researchers investigated the effect of various factors such as relative density of soil, pile embedded length ratio, pile distance from each other on the uplift bearing capacity of the pile. The research results showed that the skin bearing capacity of the pile under compressive load is more than the uplift load, and this issue increases the importance of examining the uplift bearing capacity of the pile separately No research has been done regarding the tensile load capacity of single piles and the group of piles adjacent to the slope, so investigating the behavior of the group of piles adjacent to the slope under uplift loading is of particular importance. The main purpose of this research is to investigate the uplift capacity and efficiency coefficient of the pile group adjacent to the dry sandy slope. In this investigation, the effect of various factors such as the effects of the direction of the linear pile group in relation to the slope and the arrangement of the pile group, the relative density of the soil and the embedded length of the pile on the uplift bearing capacity and the efficiency coefficient of the pile group adjacent to the dry sandy slope have been investigated. To achieve this goal, a series of laboratory tests have been conducted on the physical model of pile group near the dry sandy slope and the results have been discussed.

کلیدواژه‌ها [English]

  • Sand
  • Uplift capacity
  • Slope
  • Efficiency coefficient
Chattopadhyay BC, Pise PJ, “Uplift capacity of piles in sand”, Journal of Geotechnical Engineering, 1986, 112, 9, 888-904.‏
Chen Lujie, Chong J, Pang L, “Lateral capacity of a two-pile group foundation model located near slope in sand”, Ocean Engineering, 2022, 266, 112847. https://doi.org/10.1016/j.oceaneng.2022.112847
Conte, Enrico, Pugliese L, Toroncon A, Vena M, “A simple approach for evaluating the bearing capacity of piles subjected to inclined loads”, International Journal of Geomechanics, 2021, 21 (11), 04021224.‏ https://doi.org/10.1061/(ASCE)GM.1943-5622.0002215
De Sanctis L, Di Leora R, Garala TK, Fargnoli P “Centrifuge modelling of the behaviour of pile groups under vertical eccentric load”, Soils and Foundations, 2021, 61 (2), 465-479. https://doi.org/10.1016/j.sandf.2021.01.006
Emirler B, Mustafa T, Abdulazim Y, “Investigation on determining uplift capacity and failure mechanism of the pile groups in sand”, Ocean Engineering, 2020, 218, 108145. https://doi.org/10.1016/j.oceaneng.2020.108145
Gaaver KE, “Uplift capacity of single piles and pile groups embedded in cohesionless soil”, Alexandria Engineering Journal, 2013, 52 (3), 365-372. https://doi.org/10.1016/j.aej.2013.01.003
Jerin, Joseph, Kummar S, Sawant VA, “An experimental and numerical comparative study on the uplift capacity of single granular pile anchor and rough pile in sand”, International Journal of Geotechnical Engineering, 2022, 16 (4), 499-513.‏ https://doi.org/10.1080/19386362.2021.1999077
Kang J, Kim Y, Khnag G, “Uplift capacity of single vertical belled pile embedded at shallow depth”, Geomechanics and Engineering, 2023, 35 (2), 165-179. https://doi.org/10.12989/gae.2023.35.2.165
‏Khati BS, Sawant  VA, “Experimental study of laterally loaded pile group in square arrangement near sloping ground”, International Journal of Geomechanics, 2021, 21 (2), 04020257. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001911
Khati BS, Sawant VA, “Variation in lateral load capacity of pile embedded near slope with ground inclination and edge distance”, International Journal of Geotechnical Engineering, 2018. https://doi.org/10.1080/19386362.2018.1541149
‏Khati BS, Singh B, Sawant VA, “Comparison of lateral response of pile group in series and parallel arrangement near sloping ground”, International Journal of Geotechnical Engineering, 2020, 14 (6), 686-695. https://dx.doi.org/10.21608/njace.2024.341286
‏Kishida H, “Stress distribution by model piles in sand”, Soils and Foundations, 1963, 4 (1), 1-23.‏ https://doi.org/10.3208/sandf1960.4.1
‏LIU P, Chong J, “Analytical method for laterally loaded short piles near clay slopes considering the soil-pile-slope surface deformation mechanism”, Ocean Engineering, 2024, 296, 117036. https://doi.org/10.1016/j.oceaneng.2024.117036
Meyerhof GG, “Bearing capacity and settlement of pile foundations”, Journal of the Geotechnical Engineering Division, 1976, 102 (3), 197-228.‏ https://doi.org/10.1061/AJGEB6.0000243
Mohammad Alinejad R, Bayat M, Pakbaz M, “Response of pile group adjacent to a slope crest under static axial loading”, Arabian Journal of Geosciences, 2021, 14, 1-12. https://doi.org/10.1007/s12517-021-09123-7
Mohammad Alinejad R, Bayat M, Pakbaz M, “Experimental Study of Axially Loaded Pile Group Near a Sloping Ground”, Periodica Polytechnica Civil Engineering, 2023, 67 (2), 382-391. https://doi.org/10.3311/PPci.18334
Nasrollahzadeh E, Hataf N, “Experimental and numerical study on the bearing capacity of single and groups of tapered and cylindrical piles in sand”, International Journal of Geotechnical Engineering, 2022, 16 (4), 426-437. https://doi.org/10.1080/19386362.2019.1651042
Nordlund RL, “Bearing capacity of piles in cohesionless soils”, Journal of the Soil Mechanics and Foundations Division, 1963, 89 (3), 1-35.‏
Paik K, Salgado R, “Determination of bearing capacity of open-ended piles in sand”, Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129 (1), 46-57.‏ https://doi.org/10.1061/(ASCE)1090-0241(2003)129:1(46)
Robinsky EL, Morrison CF, “Sand displacement and compaction around model friction piles”, Canadian Geotechnical Journal, 1964, 1 (2), 81-93.
Sun T, Yang F, Cui X, Huang Z, Lyu X, Ma R, Zhang X, “Model Test Study on the Vertical Uplift Bearing Characteristics of Soil Continuous Solidified Pile Group Foundations”, Buildings, 2024, 14 (3), 849. https://doi.org/10.3390/buildings14030849
‏Shanker KP, Basudhar K, Patra N, “Uplift capacity of single piles: predictions and performance”, Geotechnical and Geological Engineering, 2007, 25, 151-161. https://doi.org/10.1007/s10706-006-9000-z
Sharafkhah M, Shooshpasha I, “Physical modeling of behaviors of cast-in-place concrete piled raft compared to free-standing pile group in sand”, Journal of Rock Mech Geotech Engineering, 2018, 10, 703-716. https://doi.org/10.1016/j.jrmge.2017.12.007
‏TEL-Nemr M, Azzam R, Gaber KE,  Ashour O, “Numerical investigation of the behavior of group-finned piles in sandy soil subjected to tensile loads”, Nile Journal of Architecture and Civil Engineering, 2024, 4 (1), 1-21. https://dx.doi.org/10.21608/njace.2024.341286
Tolun M, Emirler B, Ertugrul OL, Yildiz A, “Effect of dilatancy on tension response of completely rough piles embedded in granular soils”, Ocean Engineering, 2024, 292, 116507. https://doi.org/10.1016/j.oceaneng.2023.116507
Tianzhong MA, Yanpeng ZHU, Xiaohui YANG, “Calculation of bearing capacity and deformation of composite pile foundation with long and short piles in loess areas”, Advances in Civil Engineering, 2020, https://doi.org/1-10. 10.1155/2020/8829779
Xu Y, Fu Y, Chen Z, “Experimental study and design formula of the uplift performance of screw anchor foundations in silty clays”, Acta Geotechnica, 2024, 1-12. https://doi.org/10.1007/s11440-024-02267-2