ارزیابی آزمایشگاهی تثبیت خاک رسی به کمک مصالح بتن بازیافتی به منظور استفاده در لایه های راهسازی

نوع مقاله : مقاله کامل پژوهشی

نویسندگان

دانشکده فنی و مهندسی، دانشگاه بین‌المللی امام خمینی (ره)

10.22034/ceej.2023.56478.2259

چکیده

به ­دلیل ساخت‌وسازهای گسترده در شهرها، تولید ضایعات ناشی از ساخت‌وساز افزایش یافته است. یکی از این ضایعات، دانه‌های بتن بازیافتی می‌باشد که به‌عنوان مصالح جایگزین برای منابع طبیعی در پروژه‌های راه‌سازی استفاده می­شود. همچنین ضایعات به ­دست آمده از کارخانه ­های آهن و فولاد به­ صورت سرباره کوره آهن ­گدازی می­تواند باعث آسیب به محیط زیست شود. استفاده از چنین مصالحی در پروژه ­های راهسازی می­تواند راه حلی برای حل مخاطرات زیست­ محیطی ناشی از دفع آن­ها باشد. در این تحقیق، خاک رس جاده فرودگاه شهر زنجان مورد بررسی قرار گرفته است که از نوع رس با خاصیت خمیری بالا می‌باشد و مصالح بتن بازیافتی استفاده شده نیز از مصالح ضایعاتی ساختمان‌های کم ­طبقه شهر زنجان استخراج شده است. یک­سری مطالعات آزمایشگاهی شامل آزمایش‌های تراکم، مقاومت فشاری تک‌محوری و نسبت باربری کالیفرنیا بر روی خاک رس تثبیت‌شده انجام شد. نتایج به ­دست آمده نشان داد که با افزایش محتوای بتن بازیافتی تا 20 درصد، مقدار مقاومت فشاری تک­ محوری افزایش پیدا می‌کند و سپس سیر کاهشی پیدا می‌کند. خاک بستر رسی تثبیت‌شده با 20 درصد مصالح بتن بازیافتی به ­ازای سرباره کوره آهن‌گدازی معیار پیشنهادی UFC را برآورده می‌کند. همچنین نتایج به­ دست آمده نشان می ­دهد که برای ترکیب بهینه، به ­ازای درصدهای مختلف سرباره کوره آهن ­گدازی، افزایش سیکل­ های ذوب و یخ میتواند باعث کاهش مقدار مقاومت فشاری تک­ محوری در محدوده 32 تا 53 درصد گردد. نتایج حاصله نشان داد که اضافه کردن مصالح بتن بازیافتی و سرباره کوره آهن­ گدازی می­تواند تأثیر مثبتی را بر روی ویژگی­ های ژئوتکنیکی خاک ­های بستر رسی ایجاد کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Laboratory Evaluation of Stabilization of Clay Soil with Recycled Concrete Materials for Road Construction Layers

نویسندگان [English]

  • Javad Shamsi Sosahab
  • Alireza Ardakani
  • Mahmoud Hassanlourad
Faculty of Civil Engineering, Imam Khomeini International University, Qazvin, Iran
چکیده [English]

Expansive soils are considered as problematic soils due to their high swelling and shrinkage potential and low bearing capacity.  Cracks are usually observed in the structures based on this type of soil, which causes the instability of the structure and large settlements in the structure. Due to the scarcity of land and the rapid progress of construction, engineers have focused on construction on such soils. These lands require soil stabilization with the help of various additives to improve the subgrade and the strength characteristics of weak soils.
Soil stabilization is a technique that is used to improve and treat soil engineering properties such as strength, stiffness and compressibility of the unfavorable soil in site (Zhang et al., 2020). Subgrade improvement using mechanical and chemical techniques is very common in transportation infrastructure projects (Chakrabarti & Kodikara, 2003). Although natural materials are mainly used for mechanical stabilization of subgrade soil, there is limited past studies on the relationship with the use of RCA in subgrade soil stabilization.
In this research, the behavior of clay subgrade soil stabilized with recycled concrete aggregate (RCA) and granulated blast furnace slag (GBS) as a chemical stabilizer for use in rigid and flexible pavements has been evaluated.  At first, proctor compaction, uniaxial compressive strength and California bearing ratio tests have been conducted on different combinations of clay, RCA and GBS in order to reach the optimum additive content. RCA and GBS additives have been used in order to achieve the target uniaxial strength (28-day minimum strength of 1379kPa and 1724kPa for rigid and flexible pavements, respectively) as suggested by UFC for stabilized subgrade layers (UFC, 2004).

کلیدواژه‌ها [English]

  • Clay subgrade
  • Recycled Concrete Aggregate (RCA)
  • Uniaxial compressive strength
  • CBR
Abu-Farsakh M, Dhakal S, Chen Q, “Laboratory characterization of cementitiously treated/ stabilized very weak subgrade soil under cyclic loading”, Soils and Foundations, 2015, 55 (3), 504-516. https://doi.org/10.1016/j.sandf.2015.04.003
Agrela F, Barbudo A, Ramírez A, Ayuso J, Carvajal MD, Jiménez JR, “Construction of road sections using mixed recycled aggregates treated with cement in Malaga, Spain”, Resources, Conservation and Recycling, 2012 58, 98-106. https://doi.org/10.1016/j.resconrec.2011.11.003
Akhtar A, Sarmah AK, “Construction and demolition waste generation and properties of recycled aggregate concrete: A global perspective”, Journal of Cleaner Production, 2018, 186, 262-281. https://doi.org/10.1016/j.jclepro.2018.03.085
Arulrajah A, Piratheepan J, Disfani MM, Bo MW, “Geotechnical and geoenvironmental properties of recycled construction and demolition materials in pavement subbase applications”, Journal of Materials in Civil Engineering, 2013, 25 (8), 1077-1088. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000652
Brooks RM, Cetin M, “Application of construction demolition waste for improving performance of subgrade and subbase layers”, International Journal of Research and Reviews in Applied Sciences, 2012, 12 (3), 375-381. http://arpapress.com/Volumes/Vol12Issue3/IJRRAS_12_3_04.pdf
Cabalar AF, Zardikawi OAA, Abdulnafaa MD, “Utilisation of construction and demolition materials with clay for road pavement subgrade”, Road Materials and Pavement Design, Taylor & Francis, 2019, 20 (3), 702-714. https://doi.org/10.1080/14680629.2017.1407817
Cai GH, Liu SY, Zheng X, “Influence of drying-wetting cycles on engineering properties of carbonated silt admixed with reactive MgO”, Construction and Building Materials, 2019, 204, 84-93. https://doi.org/10.1016/j.conbuildmat.2019.01.125
Chakrabarti S, Kodikara J, “Basaltic crushed rock stabilized with cementitious additives: compressive strength and stiffness, drying shrinkage, and capillary flow characteristics”, Transportation Research Record: Journal of the Transportation Research Board, 2003, 1819 (1), 18-26. https://doi.org/10.3141/1819b-03
Deng Y, Xu C, Marsheal F, Geng X, Chen Y, Sun H, “Constituent effect on mechanical performance of crushed demolished construction waste/silt mixture”, Construction and Building Materials, 2021, 294, 123567. https://doi.org/10.1016/j.conbuildmat.2021.123567
Ding M, Zhang F, Ling X, Lin B, “Effects of freeze-thaw cycles on mechanical properties of polypropylene Fiber and cement stabilized clay”, Cold Regions Science and Technology, 2018, 154, 155-165. https://doi.org/10.1016/j.coldregions.2018.07.004
Disfani MM, Arulrajah A, Haghighi H, Mohammadinia A, Horpibulsuk S, “Flexural beam fatigue strength evaluation of crushed brick as a supplementary material in cement stabilized recycled concrete aggregates”, Construction and Building Materials, 2014, 68, 667-676. https://doi.org/10.1016/j.conbuildmat.2014.07.007
Ghazavi M, Roustaie M, “The influence of freeze-thaw cycles on the unconfined compressive strength of fiber-reinforced clay”, Cold Regions Science and Technology, 2010, 61 (2-3), 125-131. https://doi.org/10.1016/j.coldregions.2009.12.005
Hossain KMA, Mol L, “Some engineering properties of stabilized clayey soils incorporating natural pozzolans and industrial wastes”, Construction and Building Materials, 2011, 25 (8), 3495-3501. https://doi.org/10.1016/j.conbuildmat.2011.03.042
Hotineanu A, Bouasker M, Aldaood A, Al-Mukhtar M, “Effect of freeze-thaw cycling on the mechanical properties of lime-stabilized expansive clays”, Cold Regions Science and Technology, 2015, 119, 151-157. https://doi.org/10.1016/j.coldregions.2015.08.008
Jafari M, Esna-ashari, M, “Effect of waste tire cord reinforcement on unconfined compressive strength of lime stabilized clayey soil under freeze-thaw condition”, Cold Regions Science and Technology, 2012, 82, 21-29. https://doi.org/10.1016/j.coldregions.2012.05.012
Jiménez JR, Ayuso J, Agrela F, López M, Galvín AP, “Utilisation of unbound recycled aggregates from selected CDW in unpaved rural roads”, Resources, Conservation and Recycling, 2012, 58, 88-97. https://doi.org/10.1016/j.resconrec.2011.10.012
Kamei T, Ahmed A, Shibi T, “Effect of freeze-thaw cycles on durability and strength of very soft clay soil stabilised with recycled Bassanite”, Cold Regions Science and Technology, 2012, 82, 124-129. https://doi.org/10.1016/j.coldregions.2012.05.016
Kianimehr M, Shourijeh PT, Binesh SM, Mohammadinia A, Arulrajah A, “Utilization of recycled concrete aggregates for light-stabilization of clay soils”, Construction and Building Materials, 2019, 227, 116792. https://doi.org/10.1016/j.conbuildmat.2019.116792
Lopes EC, da Silva TO, Pitanga HN, Pedroti LG, Franco de Carvalho JM, Nalon GH, de Lima GES, de Araújo EN D, “Stabilisation of clayey and sandy soils with ladle furnace slag fines for road construction”, Road Materials and Pavement Design, 2023, 24 (1), 247-266. https://doi.org/10.1080/14680629.2021.2017328
Lu Y, Liu S, Alonso E, Wang L, Xu L, Li Z, “Volume changes and mechanical degradation of a compacted expansive soil under freeze-thaw cycles”, Cold Regions Science and Technology, 2019, 157, 206-214. https://doi.org/10.1016/j.coldregions.2018.10.008
Lu, Y, Liu S, Weng L, Wang L, Li Z, Xu L, “Fractal analysis of cracking in a clayey soil under freeze-thaw cycles”, Engineering Geology, 2016, 208, 93-99. https://doi.org/10.1016/j.enggeo.2016.04.023
Lu Y, Liu S, Zhang Y, Li Z, Xu L, “Freeze-thaw performance of a cement-treated expansive soil”, Cold Regions Science and Technology, 2020, 170, 102926. https://doi.org/10.1016/j.coldregions.2019.102926
McNeil K, Kang THK, “Recycled Concrete Aggregates: A Review”, International Journal of Concrete Structures and Materials, 2013, 7 (1), 61-69. https://doi.org/10.1007/s40069-013-0032-5
Poon CS, Chan D, “Feasible use of recycled concrete aggregates and crushed clay brick as unbound road sub-base”, 2006, 20, 578-585. https://doi.org/10.1016/j.conbuildmat.2005.01.045
Rong-Rong Z, Dong-Dong M, “Effects of curing time on the mechanical property and microstructure characteristics of metakaolin-based geopolymer cement-stabilized silty clay”, Advances in Materials Science and Engineering, 2020, 18-23. https://doi.org/10.1155/2020/9605941
Tabatabaie Shourijeh P, Masoudi Rad A, Heydari Bahman Bigloo F, Binesh SM, “Application of recycled concrete aggregates for stabilization of clay reinforced with recycled tire polymer fibers and glass fibers”, Construction and Building Materials, 2022, 355, 129172. https://doi.org/10.1016/j.conbuildmat.2022.129172
Tavakol M, Kulesza S, Jones C, Hossain M, “Effect of Low-Quality Recycled Concrete Aggregate on Stabilized Clay Properties”, Journal of Materials in Civil Engineering, 2020, 32 (8), 04020196. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003263
Thomas PJ, Baker JC, Zelazny LW, “An expansive soil index for predicting shrink-swell potential”, Soil Science Society of America Journal, 2000, 64 (1), 268-274. https://doi.org/10.2136/sssaj2000.641268x
Unified Facilities Criteria (UFC) Soil Stabilization for Pavements, 2004, October.
Zhang H, Yuan X, Liu Y, Wu J, Song X, He F, “Experimental study on the pullout behavior of scrap tire strips and their application as soil reinforcement”, Construction and Building Materials, 2020, 254, 119288. https://doi.org/10.1016/j.conbuildmat.2020.119288
Yilmaz Y, Ozaydin V, “Compaction and shear strength characteristics of colemanite ore waste modified active belite cement stabilized high plasticity soils”, Engineering Geology, 2013, 155, 45-53. https://doi.org/10.1016/j.enggeo.2013.01.003