ارزیابی و مقایسه عملکرد برکه‌های اختیاری سری و موازی در تصفیه فاضلاب شهری (مطالعه موردی: تصفیه‌خانه فاضلاب دلیجان)

نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 گروه مهندسی عمران، دانشکده فنی، دانشگاه اصفهان

2 اداره بهره‌برداری و توسعه فاضلاب دلیجان، شرکت آب و فاضلاب استان مرکزی

3 گروه بهره‌برداری و توسعه شبکه‌های جمع‌آوری و خطوط انتقال فاضلاب، شرکت آب و فاضلاب استان مرکزی

4 شرکت آب و فاضلاب استان مرکزی

چکیده

با توجه به ظرفیت موجود در تصفیه‌خانه فاضلاب دلیجان، عملکرد بلندمدت برکه‌های تثبیت (بی‌هوازی و اختیاری) در مقیاس و شرایط واقعی ارزیابی شده و تأثیر چیدمان برکه‌های اختیاری به ­صورت سری با موازی مورد مقایسه قرار گرفت. در این تصفیه‌خانه همچنین اثر پیش‌هوادهی در ارتقای عملکرد برکه‌های اختیاری به­ صورت پایلوت کنترل شد. بدین منظور، داده‌های آزمایشگاهی (1387 تا 1400)، به همراه نتایج آزمایش‌های تکمیلی برای پارامترهای BOD، COD، TSS، TKN و کلیفرم مدفوعی در شرایط بهره‌برداری از برکه‌های اختیاری به صورت سری و موازی و در دوره‌های سرد و گرم سال با نرم‌افزار Minitab مورد مقایسه قرار گرفت. عملکرد متوسط برکه تثبیت دلیجان در حذف BOD و COD فاضلاب به ­ترتیب 79% و 78% می‌باشد. تفاوت عملکرد برکه‌های اختیاری نیز در حذف این ترکیبات در دو حالت سری و موازی تا سطح 95% معنی‌داری قابل ملاحظه نیست (بین 65 تا 70%). اما نتایج بررسی‌های دقیق‌تر نشان داد که عملکرد برکه‌های سری در حذف ترکیبات زودتجزیه‌پذیر، به ­ویژه در دوره سرد سال، بالاتر است. در این دوره نسبت BOD به COD پساب خروجی در برکه‌های اختیاری سری 10% و غلظت TSS پساب خروجی از این واحدها 19% کمتر از برکه‌های موازی است. همچنین میزان حذف TKN در شرایط سری نسبت به موازی 13% بیشتر است. به­ عبارت دیگر، چیدمان سری می‌تواند تصفیه کامل­تری از فاضلاب به نسبت شرایط موازی ارائه دهد. همچنین مشخص شد پیش‌هوادهی برکه‌های اختیاری موازی می‌تواند توانمندی این سیستم را در دوره سرد سال برای کاهش نسبت BOD به COD و غلظت TKN به ­ترتیب 26% و 10% ارتقاء دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Performance Evaluation and Comparison of Facultative Ponds in Series and Parallel for Wastewater Treatment (Case study: Delijan WWTP)

نویسندگان [English]

  • Shervin Jamshidi 1
  • Majid Moradkhani 2
  • Mohammadali Zarei 3
  • Mehran Mamaghani nejad 4
1 Department of Civil Engineering, University of Isfahan, Iran
2 Markazi Province Water and Wastewater Company, Arak, Iran
3 Markazi Province Water and Wastewater Company, Arak, Iran
4 Markazi Province Water and Wastewater Company, Arak, Iran
چکیده [English]

Waste stabilization pond (WSP) is a conventional and widely applicable wastewater treatment unit globally. This system does not require complicated mechanical operating systems but it should not be classified as a simple process at all. Facultative ponds (FP) are the heart of this system as they use the natural symbiosis of facultative bacteria and algae for organic removal. The performance of FP is very reliant on different parameters such as wastewater influent characteristics or environmental operating conditions. Nonetheless, they are simply designed and operated based on parameters like surface organic loads and hydraulic retention time (Khosravi et al. 2013). Some literatures have recently focused on the optimization of WSP layout for higher performance (Shahsavani et al. 2019; Decostere et al. 2017; Espinosa et al. 2017). For example, a question is that which form of FPs, in series or parallel, have the highest performance or operational reliability? Answering to this question is practically a challenge. There is little chance in full scale to compare the performance of FPs with the layouts in series and parallel for long term, with same source of real wastewater, similar climate and operating conditions. This research primarily evaluates and compares the performance of FPs (2008-2020) in series and parallel layout in Delijan WSP.

کلیدواژه‌ها [English]

  • Biodegradability
  • Facultative bacteria
  • Organic compound
  • Pre-aeration
  • Waste stabilization pond (WSP)
اسلامی ه، غلمانی س و، صالحی وزیری ا، حسین­شاهی د، قلعه‌عسکری س، طالبی همت‌آبادی پ، معراجی‌مقدم ط، "مقایسه عملکرد برکه‌های تثبیت و تالاب مصنوعی با جریان زیرسطحی در تصفیه فاضلاب شهری در یزد"، مجله آب و فاضلاب، 1394، 100 (26)، 106-100.
الماسی ع، محمدی م، درگاهی ع، بهمنی ن، "ارزیابی ثابت مرگ­ومیر کلیفرم مدفوعی موجود در برکه تثبیت در حضور نور مرئی خورشید"، مجله سلامت محیط و کار، 1396، 3 (1)، 27-20.
بدلیانس قلی‌کندی گ، "طراحی تصفیه‌خانه فاضلاب"، نشر آییژ، 1397.
شرکت مهندسی آب و فاضلاب کشور، "دستیار مهندس آب و فاضلاب"، وزارت نیرو، 1391.
عبادی ح، ساکی‌پور ر، تکدستان ا، فتحی ا، "بررسی راندمان برکه­ های تثبیت بافل­ دار به ­همراه بستر سنگی در حذف مواد آلی و مغذی از فاضلاب شهری (مطالعه موردی: تصفیه­ خانه غرب اهواز)"، پنجمین کنگره بین‌المللی عمران، معماری و توسعه شهری، 1396.
علیپور م ر، علیدادی ح، نجف‌پور ع ا، پیروی ر، "ارزیابی عملکرد سیستم برکه تثبیت تصفیه خانه فاضلاب اولنگ مشهد"، فصلنامه پژوهش در بهداشت محیط، 1394، 1 (1)، 68-60.
فریدونی ت، راندمنش ف، "بررسی راندمان و مقدار حذف آلاینده ­ها در برکه­ های تثبیت فاضلاب (مطالعه موردی: تصفیه‌خانه فاضلاب شهر خرم­ آباد)"، کنفرانس ملّی علوم و مهندسی محیط زیست، 1393.
کریمی، ا، چراغی م، نیک‌داد ح ر، "ارزیابی عملکرد برکه تثبیت، لجن فعال و لاگون هوادهی در تصفیه ­خانه ­های فاضلاب کبودرآهنگ، نهاوند و اسدآباد"، دومین کنگره علوم و مهندسی آب و فاضلاب ایران، 1397.
مشکینی م، بیرق ع س، رضائی م، "برکه ­های تثبیت فاضلاب"، جهاد دانشگاهی امیرکبیر، 1395.
منزوی م ت، "فاضلاب شهری (جلد دوم)، تصفیه فاضلاب" چاپ چهارده، دانشگاه تهران، 1392.
مؤسسه تحقیقات آب، "گزارش طرح تدوین سند راهبردی و نقشه راه فناوری تصفیه فاضلاب (جلد دوم) "، 1396.
Abdo SM, El-Liethy MA, Doma HS, El Taweel GE, Ali GH, “Chlorine as an integrated approach for environmental health and hygiene: A case study on evaluation of the performance of waste stabilization ponds located at 11 governorates in Egypt”, Emerging Contaminants, 2022, 8, 243-253. Doi: 10.1016/j.emcon.2022.04.002.
Achag B, Mouhanni H, Bendou A, “Improving the performance of waste stabilization ponds in an arid climate”, Journal of Water and Climate Change, 2021, 12 (8), 3634-3647. Doi: 10.2166/wcc.2021.218.
Ali AE, Salem WM, Younes SM, Kaid M, “Modeling climatic effect on physiochemical parameters and microorganisms of Stabilization Pond Performance”, Heliyon, 2020, 6, e04005. Doi: 10.1016/j.heliyon.2020.e04005
APHA, “Standard methods for the examination of water and wastewater”, 23rd edition, Water Environment Federation, American Public Health Association, 2017.
Bansah KJ, Suglo RS, “Sewage Treatment by Waste Stabilization Pond Systems”, Journal of Energy and Natural Resource Management, 2016, 3 (1), 7-14.
Coggins LX, Crosbie ND, Ghadouani A, “The small, the big, and the beautiful: Emerging challenges and opportunities for waste stabilization ponds in Australia”, WIREs Water, 2019, 1-18. doi:10.1002/wat2.1383.
Chapra SC, “Surface Water Quality Modeling”, Waveland Inc., 2008.
Davies ML, “Water and Wastewater Engineering, Design Principles and Practice”, 2010, WEF Press.
Decostere B, Alvarado A, Sanchez EM, Pauta GC, Rousseau DPL, Nopens I, Hulle SWV, “Model based analysis of the growth kinetics of microalgal species residing in a waste stabilization pond”, Chemical Technology and Biotechnology, 2017, 92 (6), 1362-1369. Doi: 10.1002/jctb.5131.
Edokpayi JN, Odiyo JO, Popoola OE, Msagati TAM, “Evaluation of contaminants removal by waste stabilization ponds: A case study of Siloam WSPs in Vhembe District, South Africa”, Heliyon, 2021, 7 (2), e06207. Doi: 10.1016/j.heliyon.2021.e06207.
Espinosa MF, Von Sperling M, Verbyla ME, “Performance evaluation of 388 full-scale waste stabilization pond systems with seven different configurations”, Water Science and Technology, 2017, 75 (4), 916-927. Doi: 10.2166/wst.2016.532.
Ghalhari MR, Schonberger H, Lasaki BA, Asghari K, Milan EG, Rahimi NR, Yousefi S, Vakili B, Mahvi AH, “Performance evaluation and siting index of the stabilization ponds based on environmental parameters: a case study in Iran”, Journal of Environmental Health Science and Engineering, 2021, 19, 1681-1700. Doi: 10.1007/s40201-021-00723-9.
Gholikandi GB, “Methanogenesis: Biochemistry, Ecological Functions, Natural and Engineered Environments”, Nova Science Publishers, USA, 2014.
Gholikandi GB, Jamshidi S, Hazrati H, “Optimization of anaerobic baffled reactor (ABR) using artificial neural network in municipal wastewater treatment”, Environmental Engineering and Management Journal, 2014, 13 (1), 95-104.
Gerardi MH, “Nitrification and denitrification in the activated sludge process”, 2003, John Wiley & Sons.
Ho LH, Echelpoel WV, Goethals PLM, “Design of Waste Stabilization Pond system: a review”, Water Research, 2017, 123, 236-248. Doi: 10.1016/j.watres.2017.06.071
Jamshidi S, Gholikandi GB, “An assessment of using anaerobic baffled reactor to upgrade wastewater stabilization ponds: a pilot study”, International Journal of Sustainable Development and Planning, 2014, 9 (4), 597-607. Doi: 10.2495/SDP-V9-N4-597-607.
Jamshidi S, Gholikandi GB, Orumieh HR, “High organic loading rate and waste stabilization pond's operation efficiency: a case study”, WIT Transactions on Ecology and the Environment, 2011, 148, 415-424. Doi: 10.2495/RAV110381.

Khodadadi M, Mesdaghinia A, Nasseri S, Ghaneian MT, Ehrampoush MH, Hadi M, “Prediction of the waste stabilization pond performance using linear multiple regression and multi-layer perceptron neural network: a case study of Birjand, Iran”, Environmental Health Engineering and Management Journal, 2016, 3 (2), 81-89. Doi: 10.15171/EHEM.2016.05

Khosravi R, Shahryari T, Halvani A., Khodadadi M, Ahrari F, Mehrizi EA, “Kinetic analysis of organic matter removal in stabilization pond in the wastewater treatment plant of Birjand”, Advances in Environmental Biology, 2013, 7 (6), 1182-1187.
Liu L, Hall G, Champagne P, “Effects of environmental factors on the disinfection performance of a wastewater stabilization pond operated in a temperate climate”, Water, 2016, 8 (5), 1-11. Doi: 10.3390/w8010005
Mahapatra S, Samal K, Dash RR, “Waste stabilization pond (wsp) for wastewater treatment: a review on factors, modelling and cost analysis”, Journal of Environmental Management, 2022, 308, 114668. Doi: 10.1016/j.jenvman.2022.114668
Naddafi K, Hassanvand MS, Dehghanifard E, Faezi Razi D, Mostofi S, Kasaee N, Nabizadeh R, Heidari M, “Performance evaluation of wastewater stabilization ponds in arak-iran”, Iranian Journal of Environmental Health, Science and Engineering, 2009, 6 (1), 41-46.
Olukanni DO, Ducoste JJ, “Optimization of waste stabilization pond design for developing nations using computational fluid dynamics”, Ecological Engineering, 2011, 37, 1878-1888. Doi: 10.1016/j.ecoleng.2011.06.003
Passos RG, Ferreira VVM, Sperling MV, “A dynamic and unified model of hydrodynamics in waste stabilization ponds”, Chemical Engineering Research and Design, 2019, 144, 434-443. Doi: 10.1016/j.cherd.2019.02.025
Rockne KJ, Brezonik PL, “Nutrient Removal in a Cold-Region Wastewater Stabilization Pond: Importance of Ammonia Volatilization”, Journal of Environmental Engineering, 2006, 132 (4), 451-459. Doi: 10.1061/(ASCE)0733-9372(2006)132-4(451)
Shahsavani E, Ebrahimi AA, Ehrampoush MH, Maleknia H, Eslami H, Samaei MR, “Developing a system dynamics model for prediction of phosphorus in facultative stabilization ponds”, AMB Express 2019, 9 (1), 157. Doi: 10.1186/s13568-019-0882-6
Sinn J, Agrawal S, Orschler L, Lackner S, “Characterization and evaluation of waste stabilization pond systems in Namibia”, H2Open Journal, 2022, 5 (2), 365-378. Doi: 10.2166/h2oj.2022.004
Sperling M, “Urban wastewater treatment in Brazil”, 2016, technical note.
Yazdian H, Jamshidi S, “Performance evaluation of wastewater treatment plants under the sewage variations imposed by COVID-19 spread prevention actions”, Journal of Environmental Health Science and Engineering, 2021, 19 (2), 1613-1621. Doi: 10.1007/s40201-021-00717-7
Zhao Y, Tu Q, Yang Y, Shu X, Ma W, Fang Y, Li B, Huang J, Zhao H, Duan C, “Long-term effects of duckweed cover on the performance and microbial community of a pilot-scale waste stabilization pond”, Journal of Cleaner Production, 2022, 371, 13353. Doi: 10.1016/j.jclepro.2022.133531