بررسی توزیع فشار جانبی محرک خاک بر روی دیوار حائل صلب تحت اثر سربار یکنواخت در خاک های یک لایه و دولایه از طریق مدلسازی فیزیکی کوچک‌مقیاس

نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 گروه مهندسی خاک و پی، دانشکده مهندسی عمران، دانشگاه تبریز

2 گروه مهندسی معدن، دانشکده مهندسی معدن، پردیس دانشکده‌های فنی، دانشگاه تهران

چکیده

طراحی دیوارهای حائل به مقدار فشار محرک اعمالی از طرف خاک‌ریز پشت دیوار بستگی دارد. لذا تخمین مقدار این فشار یک عامل اساسی در امر طراحی می­باشد. در تحقیق حاضر به­ منظور ارزیابی فشار محرک خاک، ده آزمایش فیزیکی در مقیاس آزمایشگاهی بر روی یک دیوار حائل صلب در حال حرکت انتقالی تحت اثر سربارهای یکنواخت و خاک‌ریز تک­لایه و دولایه انجام شده است. برای بررسی رفتار خاک از فشارسنج ­های مسطح دایره­ای و روش سرعت­ سنجی تصویری بهره گرفته شده است. نتایج نشان می­دهد که با شروع حرکت انتقالی محرک دیوار مقادیر فشار جانبی خاک به­ تدریج کاهش می ­یابند و در شرایط محرک به کم­ترین مقدار خود می­ رسند. در جابه‌جایی‌های بزرگ­تر از جابه ­جایی لازم برای حصول وضعیت محرک، پس از کاهش مقدار فشار در پای دیوار مجدداً سیر صعودی مقادیر ثبت‌شده به­ دلیل از بین رفتن قوس­ های موضعی ملاحظه می­ گردد. همچنین توزیع فشار جانبی محرک در ارتفاع دیوار برخلاف تئوری رانکین (Rankine's Theory) غیرخطی می ­باشد. همچنین مقادیر فشار ثبت‌شده در پای دیوار به ­ازای سربارهای برابر با 0 تا 2/1 کیلونیوتن بر مترمربع در خاک تک­ لایه در وضعیت سکون 65 تا 72 درصد رابطه جکی و در وضعیت محرک انتقالی 52 تا 69 درصد رابطه رانکین می باشد. این مقادیر در خاک‌ریز دولایه به­ ترتیب 73 تا 76 درصد و 32 تا 40 درصد می ­باشند. به­ علاوه در حین حرکت انتقالی دیوار در وضعیت محرک، تمایز بین ناحیه ثابت و ناحیه گسیختگی به تدریج وضوح بیشتری می­ یابد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of Lateral Earth Pressure Distribution Against a Rigid Retaining Wall Under Uniform Surcharge in Single and Two-Layer Soil Through Small- Scale Physical Modeling

نویسندگان [English]

  • Negar Salehi Alamdari 1
  • Hooshang Katebi 1
  • Mohammad Hossein Khosravi 2
1 Faculty of Civil Engineering, University of Tabriz, Tabriz. Iran
2 School of Mining Engineering, University of Tehran, Tehran, Iran
چکیده [English]

In the current study, a series of physical model tests was conducted to evaluate active earth pressure behind a translating rigid retaining wall under a uniform surcharge. Experimental results were compared with the predictions from proposed formulations to estimate the magnitude and distribution of lateral pressures in the failure zone behind a translating rigid wall under a uniform surcharge. The effect of arching is also investigated in single and two-layer soils through small-scale physical modeling and different surcharge combinations.

کلیدواژه‌ها [English]

  • Retaining wall
  • Translation
  • Active earth pressure
  • Arching effect
  • Uniform surcharge
  • PIV
Chen JJ, Lei H, Wang JH, “Numerical Analysis of the installation effect of diphragm walls in saturated soft clay”, Acta Geotechnica, 2014, 9 (6), 981-991.
Coulomb C, “Essai sur une application des regles de maximis et minimis quelques problemes de statique”, relatits a l’architecture, Paris: Memoires de Mathematique de l’Academie Royale de Science 1973, 7, 1776.
Esmaeili Falak M, “Effect of System’s Geometry on the Stability of Frozen Wall in Excavation of Saturated Granular Soils”, Doctoral dissertation, University of Tabriz, 2017.
Fang Y, Ishibashi I, “Static earth pressures with various wall movements”, Journal of Geotechnical Engineering, 1986, 112 (3), 317-333.
Frydman S, Keissar I, “Earth pressure on retaining walls near rock faces”, Journal of Geotechnical Engineering, 1987, 113 (6), 586-99.
Handy R, “The arch in soil arching”, ASCE Journal of Geotechnical Engineering, 1985, 111 (3), 302-318.
Handy R, Spangler M, “Geotechnical Engineering: Soil and Foundation Principles and Practice”, 5 ed., McGraw-Hill Education, 2007.
Jaky J, “Earth pressure in silos”, 1948, 103-107.
Janssen HA, “Versuche uber Getreidedruck in Silozellen”, Aeitsc hri fi, Verein Deutscher Ingenieure, 1985, 39, 1045-1049.
Krabbenhoft K, “OptumG2: Theory, Optum Computational Engineering”, Available at: www.optumce.com, 2017.
Krabbenhoft K, “Static and seismic earth pressure coefficients for vertical walls with horizontal backfill”, Soil Dynamics and Earthquake Engineering, 2018, 104, 403-407.
Khosravi MH, “Arching effect in geomaterials with applications”, PhD Dissertation, Department of International Development Engineering, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2012.
Khosravi MH, Pipatpongsa T, Takemura J, “Experimental analysis of earth pressure against rigid retaining walls under translation mode”, Géotechnique, 2013, 63 (12), 1020-1028.
Khosravi MH, Pipatpongsa T, Takemura J, “Theoretical analysis of earth pressure against rigid retaining walls under translation mode”, Soils and Foundations, 2016, 56 (4), 664-675.
Khosravi MH, Kargar AR, Amini M, “Active earth pressures for non-planar to planar slip surfaces considering soil arching”, International Journal of Geotechnical Engineering, 2020, 14 (7), 730-739
Khosravi MH, Bahaaddini M, Kargar AR, Pipatpongsa T, “Soil Arching Behind Retaining Walls under Active Translation Mode: Review and New Insights”, International Journal of Mining and Geo-Engineering, 2018b, 52 (2), 131-140
Khosravi MH, Hamedi Azad F, Bahaaddini M, Pipatpongsa T, “DEM Analysis of Backfilled Walls Subjected to Active Translation Mode”, International Journal of Mining and Geo-Engineering 2017, 51 (2), 191-197.
Krynine DP, “Discussion of ‘Stability and stiffness of cellular cofferdams’ by Karl Terzaghi”, Transactions of the ASCE, 1945, 110 (2253), 1175-1178.
Lambe TW, Whitman RV, “Soil mechanics”, New York: John Wiley & Sons,1969.
Li MG, Chen JJ, Wang JH, “Arching effect on lateral pressure of confined granular materail: numerical and theoretical analysis, Granular Matter”, published online, 2017, 19 (2), 1-11.
Livingston CW, “The natural arch, the fracture pattern, and the sequence of failure in massive rock surrounding an underground opening”, Pennsylvania State University, 1961, Bulletin 76, 197-204.
Loukidis D, Salgado R, “Active pressure on gravity walls supporting purely frictional soils”, Canadian Geotechnical Journal, 2012, 49 (1), 78-97.
Matsuo M, Kenmochi S, Yagi H, “Experimental study on earth pressure of retaining wall by field tests”, Soils Foundation, 1978, 18 (3), 27-41.
Matsuzawa H, Hazarika H, “Analyses of active earth pressure against rigid retaining wall subjected to different modes of movement”, Soils and Foundations, 1996, 36 (3), 51-65.
Paik KH, Salgado R, “Estimation of active earth pressure against rigid retaining walls considering arching effects”, Géotechnique, 2003, 53 (7), 643-653.
Pietrzak M, Leśniewska D, “Strains Inside Shear Bands Observed in Tests on Model Retaining Wall in Active State”, In: Giovine P, Mariano P, Mortara G (eds) Micro to MACRO Mathematical Modelling in Soil Mechanics, Trends in Mathematics. Birkhäuser, Cham, 2018.
Rankine WJM, “on the stability of loose earth”, Philosophical Transactions of the Royal Society of London, 1857, 147, 9-27.
Rezaei AH, Katebi H, Ahmadi Adli M, “Evaluation of Mechanized Tunnels Lining Loads by Application of Physical Modelling”, Tunneling & Underground Space Engineering, 2018, 6 (2) 49-66..
Rui R, van Tol F, Xia X-L, van Eekelen S, Hu G, Xia Y-y “Evolution of soil arching; 2D DEM simulations”, Computers and Geotechnics, 2016, 73, 199-209.
Spangler MG, Handy RL, “Soil engineering”, New York: Harper & Row, 1984.
Srinivasa S, Radoslaw LM, “Arching in Distribution of Active Load on Retaining Walls”, Journal of Geotechnical and Geo-Environmental Engineering, 2012,138 (5), 575-584.
Stević M, Jasarevic´ I, Ramiz F, “Arching in hanging walls over leached deposits of rock salt”, Montreux, Suisse, 1979, 745-752.
Take WA, Valsangkar AJ, “Earth pressures on unyielding retaining walls of narrow backfill width”, Canadian Geotechnical Journal ,2001, 38 (6), 1220-1230.
Terzaghi K, “Large retaining-wall tests”, Engineering News-Record, McGraw-Hill, 1934.
Terzaghi K, “Theoretical soil mechanics”, New York (NY): John Wiley & Sons, 1943.
Tsagareli ZV, “Experimental investigation of the pressure of a loose medium on retaining walls with a vertical back face and horizontal backfill surface”, Journal of Soil Mechanics and Foundaion Engineering, 1965, 91 (4), 197-200.
Walker  DM, “An approximate theory for pressure and arching in hoppers”, Chemical Engineering Science, 1966, 21 (11), 975-997.
White DJ, Randolph M, Thompson B, “An image-based deformation measurement system for the geotechnical centrifuge”, International Journal of Physical Modelling in Geotechnics, 2005, 5 (3), 1-12.
White DJ, Take WA, GeoPIV, 7.6 ed., 2003.
White DJ, Take WA, Bolton, MD, “Soil deformation measurements using particle image velocimetry (PIV) and photogrammetry”, Géotechnique, 2003, 53 (7), 619-631.
Wood DM, "Geotechnical modelling", CRC Press. Applied Geotechnics, 2004.
Worden FT, Achmus M, “Numerical modeling of three dimensional active earth pressure acting on rigid walls", Computers and Geotechnics, 2013, 51, 83-90.