بررسی انتشار و پراکندگی آلاینده‌ PM2.5 منتشره از اتوبوس‌های BRT شهر تبریز

نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 دانشکده مهندسی شیمی و نفت، دانشگاه تبریز

2 دانشکده مهندسی محیط زیست، دانشگاه تهران

چکیده

آلودگی هوا و اثرات نامطلوب آن بر روی بهداشت، اقتصاد و مسائل اجتماعی جوامع به حدی است که بسیاری از کشورهای جهان آن را در رأس برنامه­های توسعه اقتصادی و اجتماعی خود قرار داده­اند. ریزگردها، PM2.5، از مهم‌ترین آلاینده‌های تولیدی از خودروها هستند که اثرات قابل­توجهی بر سلامت افراد و محیط‌ زیست دارند. اتوبوس‌های گازوئیلی شهری منبع اصلی انتشار این آلاینده می‌باشند. غلظت آلاینده‌ PM2.5 در شهر تبریز در سال 1394، μg/m3 18 گزارش شده است که میزان استاندارد آن μg/m3 12 در سطح جهان است. مدل‌سازی یک روش مؤثر و کم‌هزینه در تعیین میزان انتشار حاصل از خودروها و تدوین سیاست‌ها و روش‌های کاهش و کنترل این انتشارات است. در این مقاله از مدل IVE به منظور تعیین میزان آلاینده‌های PM2.5 منتشره از اتوبوس‌های BRT شهر تبریز، در فاصله‌ 4 کیلومتری چهارراه شریعتی تا فلکه دانشگاه به عنوان مطالعه موردی و از مدل AERMOD به منظور تعیین سهم این ناوگان در میزان غلظت آلاینده‌ PM2.5 اندازه‌گیری شده در 3 ایستگاه پایش کیفیت هوا استفاده شد. انتشارات PM2.5 در ساعات 9-8 و 16-13 بالاترین میزان را داشته و بیش از دو سوم انتشارات روزانه، مربوط به اتوبوس‌های تک کابین می‌باشد. سهم تردد اتوبوس‌های BRT بر غلظت PM2.5 در ایستگاه آبرسان حدود 60% می‌باشد که در مورد ایستگاه‌های باغشمال و راسته کوچه (دورتر از دو ایستگاه دیگر) به­ترتیب %50 و %5/0 است.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of Emission and Dispersion of PM2.5 Pollutant Emitted from BRT Buses in Tabriz City

نویسندگان [English]

  • Leila Khazini 1
  • Mina Jamshidi Kalajahi 1
  • Khashayar Qiami Giashi 1
  • Khosro Ashrafi 2
1 Faculty of Chemical and Petroleum Engineering, University of Tabriz
2 Faculty of Environmental Engineering, University of Tehran
چکیده [English]

Air pollution and its adverse effects on the health, economic, and social issues of societies are so high that many countries in the world put it at the head of their economic and social development programs. Particulate matters, PM2.5, which mostly are emitted from gas oil fueled buses in urban environments, is one of the most important pollutants, which has significant effects on the health of individuals and the environment. About 72% of air pollution in Tabriz is due to mobile sources (Kahforooshan and Fatehifar, 2013). PM2.5 concentration in Tabriz was 18 μg/m3 in 2015, while the standard concentration for this pollutant is 12 μg/m3. In this paper, the IVE emission model was used to determine the amount of PM2.5 pollutants emitted from BRT buses in Tabriz, 4 km distance from Shariati intersection to the university intersection as a case study and AERMOD dispersion model was used to determine the contribution of this fleet to the concentration of PM2.5 pollutant which is measured at three air quality monitoring stations.

کلیدواژه‌ها [English]

  • Air pollution
  • Particulate matters
  • PM2.5
  • BRT bus
  • IVE emission mode
  • AERMOD dispersion model
اشرفی خ، شفیع‌پور م، سلیمیان م، مومنی م‌ر، "تعیین میزان انتشار و مدل‌سازی نحوه پراکنش آلاینده‌های ترکیبات آلی فرار ناشی از تبخیر سطحی از مخازن ذخیره‌ای واقع در منطقه‌ عسلویه"، مجله محیط­شناسی، 1391، 38 (3)، 47-60.
اشرفی خ، شفیع‌پور مطلق م، بختیاری‌ارگسی ی، "تخمین میزان انتشار آلاینده­های جاده ترانزیتی امام رضا (ع) در محدوده شهرستان پاکدشت با مدل شبیه ساز IVE"، دومین همایش ملّی مدیریت آلودگی هوا و صدا، تهران، دانشگاه صنعتی شریف، 1392.
اخبار خودرو، 1392.
انجمن ارزیابی محیط ‌زیست ایران، 1392.
شفابخش غ، تقی­زاده س ‌ع، مهرابی س، "بررسی تأثیر حجم ترافیک و سرعت متوسط ناوگان در میزان انتشار آلاینده­های ناشی از حمل­ونقل در خیابان­های شهری- مطالعه موردی: خیابان فرهنگ­سازی"، چهاردهمیـن کنفرانس بین­المللی مهندسی حمل­ونقل و ترافیک، تهران، معاونت و سازمان حمل­ونقل ترافیک، 1394.
فاتحی‌فر ا، کاه‌فروشان د، "طرح تدوین فهرست منابع انتشار آلاینده‌های هوای شهر تبریز"، اداره کل حفاظت محیط‌زیست آذربایجان‌شرقی و دانشگاه صنعتی سهند- پژوهشکده مهندسی محیط‌زیست و توسعه ‌پایدار، 1392.
عنایتی‌آهنگر ف، میرشی س، حامدی م، دهقانی س، "تخمین تأثیر بار ترافیکی بر انتشار آلودگی در یک قطعه بزرگراهی تهران"، اولین کنفرانس مدیریت آلودگی هوا و صدا، تهران، دانشگاه صنعتی شریف، 1391.
نادری م، "فیلتر دوده دیزل: راهی مؤثر برای کاهش آلودگی موتورهای دیزلی و ذرات معلق"، گزارش تهیه شده در دفتر محیط زیست معاونت حمل و نقل و ترافیک و شرکت کنترل کیفیت هوا، 1393.
Adachi K, Tainosho Y, “Characterization of heavy metal particles embedded in tire dust”, Environment International, 2004, 30 (8), 1009-1017.
Bhola R, Gurjar LT, Chandra M, Ojha SP, “Air Pollution (Health and Environmental Impacts)”, CRC Press, New York, US, 2010.
Brook RD, Rajagopalan S, Pope CA, Brook JR, Bhatnagar A, Diez-Roux AV, Holguin F, Hong Y, Luepker RF, Mittleman MA, “Particulate matter air pollution and cardiovascular diseas”, Circulation, 2010, 121 (21), 2331-2378.
Brunekreef B, Holgate ST, “Air pollution and health”, The Lancet, 2002, 360 (9341), 1233-1242.
Chen F, Hu W, Zhong Q, “Emissions of particle-phase polycyclic aromatic hydrocarbons (PAHs) in the Fu Gui-shan Tunnel of Nanjing, China”, Atmospheric Research, 2013, 124, 53-60.
Chen H, Bai S, Eisinger D, Niemeier D, Claggett M, “Predicting near-road PM2.5 concentrations: comparative assessment of CALINE4, CAL3QHC, and AERMOD”, Transportation Research Record: Journal of the Transportation Research Board, 2009, 2123, 26-37.
De Visscher A, “Air dispersion modeling: foundations and applications”, John Wiley & Sons 2013.
Dresser AL, Huizer RD, “CALPUFF and AERMOD model validation study in the near field: Martins Creek revisited”, Journal of the Air and Waste Management Association, 2011, 61 (6), 647-659.
Gibson MD, Kundu S, Satish M, “Dispersion model evaluation of PM2.5, NOx and SO2 from point and major line sources in Nova Scotia, Canada using AERMOD Gaussian plume air dispersion model”, Atmospheric Pollution Research, 2013, 4 (2), 157-167.
Guo H, Zhang QY, Shi Y, Wang DH, “Evaluation of the International Vehicle Emission (IVE) model with on-road remote sensing measurements”, Journal of environmental sciences, 2007, 19 (7), 818-826.
Hadlocon LS, Zhao LY, Bohrer G, Kenny W, Garrity SR, Wang J, Wyslouzil B, Upadhyay J, “Modeling of particulate matter dispersion from a poultry facility using AERMOD”, Journal of the Air & Waste Management Association, 2015, 65 (2), 206-217.
Hussain Shah I, Zeeshan M, “Estimation of light duty vehicle emissions in Islamabad and climate co-benefits of improved emission standards implementation”, Atmospheric Environment, 2016, 127, 236-243.
ISSRC, “IVE Model User Manual, Version 2.0”, International Sustainable Systems Research Center, 2008.
Kittelson DB, “Engines and nanoparticles: a review”, Journal of Aerosol Science, 1998, 29 (5), 575-588.
Kholod N, Evans M, Gusev E, Yu S, Malyshev V, Tretyakova S, Barinov A, “A methodology for calculating transport emissions in cities with limited traffic data: Case study of diesel particulates and black carbon emissions in Murmansk”, Science of The Total Environment, 2016, 547, 305-313.
Kloog I, Coull BA, Zanobetti A, Koutrakis P, Schwartz JD, “Acute and chronic effects of particles on hospital admissions in New-England”, PloS one, 2012, 7 (4), e34664.
Langner C, Klemm O, “A comparison of model performance between AERMOD and AUSTAL2000”, Journal of the Air and Waste Management Association, 2011, 61 (6), 640-646.
Martinelli N, Olivieri O, Girelli D, “Air particulate matter and cardiovascular disease: a narrative review”, European Journal of Internal Medicine, 2013, 24 (4), 295-302.
Mishra D, Goyal P, “Estimation of vehicular emissions using dynamic emission factors: A case study of Delhi, India”, Atmospheric Environment, 2014, 98, 1-7.
Misra A, Roorda MJ, MacLean HL, “An integrated modelling approach to estimate urban traffic emissions”, Atmospheric Environment, 2013, 73, 81-91.
Nagpure A, Gurjar B, Kumar P, “Impact of altitude on emission rates of ozone precursors from gasoline-driven light-duty commercial vehicles”, Atmospheric Environment, 2011, 45 (7), 1413-1417.
United Nations, “World’s population increasingly urban with more than half living in urban areas”, United Nations, 2014.
Oanh NTK, Thuy Phuong MT, Permadi DA, “Analysis of motorcycle fleet in Hanoi for estimation of air pollution emission and climate mitigation co-benefit of technology implementation”, Atmospheric Environment, 2012, 59, 438-448.
Perugu H, Wei H, Yao Z, “Integrated data-driven modeling to estimate PM2.5 pollution from heavy-duty truck transportation activity over metropolitan area”, Transportation Research Part D: Transport and Environment, 2016, 46, 114-127.
Pope III CA, Ezzati M, Dockery DW, “Fine-particulate air pollution and life expectancy in the United States”, The New England Journal of Medicine, 2009, 360, 376-386.
Rose D, Wehner B, Ketzel M, Engler C, Voigtländer J, Tuch T, Wiedensohler A, “Atmospheric number size distributions of soot particles and estimation of emission factors”, Atmospheric Chemistry and Physics, 2006, 6 (4), 1021-1031.
Shrestha SR, Oanh NTK, Xu Q, Rupakheti M, Lawrence MG, “Analysis of the vehicle fleet in the Kathmandu Valley for estimation of environment and climate co-benefits of technology intrusions”, Atmospheric Environment, 2013, 81, 579-590.
USEPA, “User’s Guide for The AMS/EPA Regulatory Model-AERMOD”, Research Triangle Park, Ed., ed. North Carolina, 2004.
Vojtisek-Lom M, Cobb J, “Vehicle mass emissions measurement using a portable 5-gas exhaust analyzer and engine computer data”, Proceedings: Emission Inventory, Planning for the Future, 1997.
Wang H, Chen C, Huang C, Fu L, “On-road vehicle emission inventory and its uncertainty analysis for Shanghai, China”, Science of the Total Environment, 2008, 398 (1), 60-67.
WHO, “Burden of proof from ambaient and houshold air pollution”, 2014.
Zou B, Zhan FB, Wilson JG, Zeng Y, “Performance of AERMOD at different time scales”, Simulation Modelling Practice and Theory, 2010, 18 (5), 612-623.