مقایسه نحوه تغییرات رفتار خمیری و نفوذپذیری بنتونیت در حضور آلاینده‌های آلی و فلزسنگین

نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 دانشکده مهندسی عمران، پردیس دانشکده‌های فنی، دانشگاه تهران و استاد گروه عمران، دانشکده مهندسی، دانشگاه بوعلی سینا

2 دانشکده مهندسی عمران، دانشگاه تهران

چکیده

     نفوذپذیری کم و قابلیت جذب آلاینده­های گوناگون، بنتونیت را به عنوان مصالحی مناسب در مراکز دفن مهندسی زباله مطرح کرده است. حضور آلاینده  در سیال منفذی و اندرکنش آلاینده با پولک­های رسی، خصوصیات فیزیکی و رفتاری خاک را تغییر می‌دهد. آلاینده­های آلی و فلزات سنگین دو دسته عمده از آلاینده­های زیست­محیطی در خاک به شمار می­آیند. تحقیقات گذشته نشان می‌دهند که آلاینده آلی با کاهش ثابت دی‌الکتریک و فلز سنگین با افزایش ظرفیت و غلظت الکترولیت، لایه‌ دوگانه را فشرده می‌کنند. لایه دوگانه فشرده‌تر، نفوذپذیری بیش‌تر و خاصیت خمیری کم‌تری را ایجاد می‌کند. با وجود توجه ویژه محققین و تحقیقات مختلفی که در خصوص فرایند اندرکنش آلاینده­های آلی و فلز سنگین با کانی­های رسی انجام شده است، در زمینه مقایسه تغییر خصوصیات مهندسی بنتونیت در اندرکنش با آلاینده­های فوق تحقیقات محدودی انجام گرفته است. هدف این مقاله مقایسه تغییر رفتار خمیری و نفوذپذیری بنتونیت آلوده شده با آلاینده­های آلی (متانول، اتانول، استیک اسید و دایوکسان) و فلز سنگین (روی و سرب) می­باشد. به این منظور، آزمایشات حدود اتربرگ و تحکیم بر نمونه‌های بنتونیت آلوده شده با غلظت­های مختلف آلاینده آلی انجام شد و با نتایج موجود بنتونیت آلوده شده با فلز سنگین مقایسه شد. نتایج حاصل با مدل تئوریک لایه دو گانه گوی- چپمن مقایسه شده و تأثیر پارامترهای مختلف مدل شامل ثابت دی­الکتریک، ظرفیت کاتیون، شعاع هیدراته و غلظت فلز سنگین و تأثیر آن­ها بر خصوصیات خمیری و نفوذپذیری بنتونیت مورد تجزیه و تحلیل قرار گرفته است. نتایج نشان می­دهند که افزایش غلظت در حضور آلاینده آلی سبب کاهش خصوصیات خمیری و افزایش ضریب هدایت هیدرولیکی بنتونیت می­شود. به طوری‌که افزایش غلظت آلاینده آلی از 10 درصد به 40 درصد در نسبت تخلخل 2، نفوذپذیری را برای اتانول در حدود 10 برابر، متانول 7 برابر و در حضور استیک اسید 4 برابر افزایش داده است. به طوری که ثابت دی­الکتریک، لزجت سینماتیکی و اندازه‌ مولکولی تغییر رفتار بنتونیت را در حضور سیال آلی کنترل می‌کند. نتایج تحقیق حاضر نشان می­دهند که تفاوت حد روانی بنتونیت در ثابت دی‌الکتریک یکسان به ازای سیالات آلی متفاوت با لحاظ کردن اثر تفاوت در لزجت نسبی سیال قابل توجیه بوده که عدم تطابق نتایج آزمایشگاهی با نظریه‌ لایه دوگانه، از این منظر قابل تجزیه و تحلیل است.

کلیدواژه‌ها


عنوان مقاله [English]

The Comparison of Plastic and Permeability Behavior of Bentonite in the Presence of Organic and Heavy Metal Contaminants

نویسندگان [English]

  • Vahid Reza Ouhadi 1
  • Mohammad Saeed Fakhimjoo 2
  • Seyed Taghi Omid Naeini 2
1 Faculty of Civil Engineering, Bu-Ali Sina University
2 School of Civil Engineering, University of Tehran
چکیده [English]

     Bentonite is a suitable material in engineering landfills due to its low permeability and contaminant sorption ability. The presence of contaminant in pore fluid and its interaction with clay particles, changes the physical and behavioral properties of clays. Organic and heavy metal contaminants are two types of environmental contaminants. Prior researches have shown that organic contaminants compress the double layer due to their low dielectric constant. A compressed double layer makes a larger permeability and lower plasticity properties. In spite of several researches that have been done about organic and heavy metal contaminant interactions with clay minerals, there is lack of study about the difference between the influences of these two contaminants upon soil behaviour. The objective of this paper is to compare the plasticity and permeability changes of bentonite upon interaction with organic (Methanol, Ethanol, Acetic Acid, Dioxane) and heavy metal (Pb and Zn) contaminants.

کلیدواژه‌ها [English]

  • Bentonite
  • Organic contaminant
  • Heavy metal contaminant
  • Plastic behavior
  • Permeability
  • Dielectric constant
 [1]      Yong, R. N., Mohamed, A. M. O., Warkentin, B. P., "Principles of Contaminant Transport in Soils", Elsevier, New York, 1992.
[2]      Bolt, G. H., "Physicochemical Analysis of the Compressibility of Pure Clays", Géotechnique, 1956, 6 (2), 86-93.
[3]      Mesri, G., Olson, R. E., "Consolidation Charactristics of Montmorillonite", Géotechnique, 1971, 21 (4), 341-352.
[4]      Fernandez, F., Quigley, R. M., "Hydraulic Conductivity of Natural Clays Permeated with Simple Liquid Hydrocarbons", Canadian Geotechnical Journal, 1985, 22 (2), 205-214.
[5]      Fernandez, F., Quigley, R. M., "Viscosity and Dielectric Constant Controls on the Hydraulic Conductivity of Clayey Soils Permeated with Water-Soluble Organics", Canadian Geotechnical Journal, 1988, 25 (3), 582-589.
[6]      Barbour, S. L., Fredlund, D. G., "Mechanisms of Osmotic Flow and Volume Change in Clay Soils", Canadian Geotechnical Journal, 1989, 26 (4), 551-562.
[7]      Chen, J. S., Cushman, J. H., Low, P. F., "Rheological Behaviour of Na-Montmorillonite Suspension at Law Electrolyte Concentration", Clays and Clay Minerals, 1990, 38 (1), 57-62.
[8]      Spagnoli, G., Stanjek, H., Sridharan, A., "Influence of Ethanol/Water Mixture on the Undrained Shear Strength of Pure Clays", Bulletin of Engineering Geology and the Environment, 2012, 71 (2), 389-398.
[9]      Olgun, M., Yıldız, M., "Influence of Acetic Acid on Structural Change and Shear Strength Of Clays", Iranian Jounal of Science and Technology Transaction B- Engineering, 2012, 36 (C1), 25-36.
[10]    Hueckel, T., Kaczmarek, M., Caramuscio, P., "Theoretical Assessment of Fabric and Permeability Changes in Clays Affected By Organic Contaminants", Canadian Geotechnical Journal, 1997, 34 (4), 588-603.
[11]    Mitchell, J. K., Soga, K., "Fundamentals of Soil Behavior", John Wiley & Sons, New Jersey, 2005.
[12]    Gilligan, E. D., "The Effect of Organic Pore Fluids on the Fabric and Geotechnical Behavior of Clays", PhD Thesis, Syracus, New York, 1983.
[13]    Gilligan, E. D., Clemence, S. P., "Fabric and Engineering Behavior of Organic-Saturated Clays", Bulletin of the Assosiation of the Engineering Geologists, 1984, 21, 515-529.
[14]    Budhu, M., Giese Jr, R. F., Campbell, G., Baumgrass, L., "The Permeability of Soils with Organic Fluids", Canadian Geotechnical Journal, 1991, 28 (1), 140-147.
[15]    Yong, R. N., "Geoenvironmental Engineering: Contaminated Soils, Pollutant Fate and Mitigation", CRC Press, 2001.
[16]    Yong, R. N., Warkentin, B. P., "Soil Properties and Behaviour", Elsevier, New York, 1975.
[17]    Olgun, M., Yıldız, M., "Effect of Organic Fluids on the Geotechnical Behavior of a Highly Plastic Clayey Soil", Applied Clay Science, 2010, 48 (4), 615-621.
[18]    Sridharan, A., Rao, S. M., Murthy, N. S., "Compressibility Behaviour of Homoionized Bentonites", Géotechnique, 1986, 36 (4), 551-564.
[19]    Ouhadi, V. R., Yong, R. N., Sedighi, M., "Influence of Heavy Metal Contaminants at Variable Ph Regimes on Rheological Behaviour of Bentonite", Applied Clay Science, 2006, 32 (3-4), 217-231.
[20]    Newland, P. L., Allely, B. H., "A Study of The Consolidation Characteristics of a Clay", Géotechnique, 1960, 10 (2), 62-74.
[21]   صدیقی، م.، "رفتار تراکم پذیری اسمزی و خصوصیات تحکیمی بنتونیت در اثر اندرکنش با آلاینده­های حاوی فلز سنگین"، پایان‌نامه کارشناسی ارشد، دانشگاه بوعلی سینا، همدان، 1382.
[22]    White, W. A., "Water Sorption Properties of Homoionic Clay Minerals", Illinois State Geological Survey Report of Investigations 208, University of Illinoi, Illinois, 1958.
[23]    Kaya, A., Fang, H. Y., "The Effects of Organic Fluids on Physicochemical Parameters of Fine-Grained Soils", Canadian Geotechnical Journal, 2000, 37 (5), 943-950.
[24]    Murray, E., Rix, D., Humphrey, R., "Evaluation of Clays as Linings to Landfill", Engineering Geology Special Publications, 1996, 11 (1), 251-258.
[25] بهنیا، ک.، طباطبایی، ا. م.، "مکانیک خاک"، مؤسسه انتشارات و چاپ دانشگاه تهران، 1384، جلد اول، ص. 457.
[26]    Somerville, S. H., Large, D. S., "Control of Groundwater for Temporary Works", Construction Industry Research and Information Association, Vol. 113 of CIRIA Report, 1986.
[27]    Chen, J., Anandarajah, A., "Influence of Pore Fluid Composition on Volume of Sediments In Kaolinite Suspensions", Clays and Clay Minerals, 1998, 46 (2), 145-152.
[28]    Arasan, S., "Effect of Chemicals on Geotechnical Properties o Clay Liners: A Review", Research Journal of Applied Science, Engineering and Technology, 2010, 2 (8), 765-775.
[29]    Cheng, H., Hu, E., Hu, Y., "Impact of Mineral Micropores on Transport and Fate of Organic Contaminants: A Review", Journal of Contaminant Hydrology, 2012, 80-90.
[30]    Van Olphen, H., "An Introduction to Clay Colloid Chemistry: For Clay Technologists, Geologists, and Soil Scientist", Krieger, Marabal, Florida, 1991.
[31]    Weast, R. C., "CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical And Physical Data", CRC Press, 1973.
[32]    Perry, R. H., Green, D. W., "Perry's Chemical Engineers Handbook", McGraw - Hill Professional Publishing, 8th Edition, 2008.