بهسازی خاک رس در پوشش کف خاکچال جهت کاهش ترک با استفاده از الیاف و نانومواد شیمیایی

نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 دانشکده مهندسی عمران، دانشگاه سمنان

2 دانشکده مهندسی، دانشگاه صنعتی قوچان

10.22034/ceej.2023.57284.2275

چکیده

     افزایش تولید پسماندها ناشی از رشد جمعیت و دفن غیراصولی این مواد در خاکچال ­ها و گسترش آلودگی­های ناشی از آن، یکی از مهمترین مشکلات زیست­محیطی در جوامع شهری است. خاکچال­های مهندسی با به­کارگیری لایه ­ها و پوشش ­های ویژه در بدنه و کف (لاینر)، از نفوذ شیرآبه­ های سمی و خطرناک به محیط اطراف جلوگیری می ­نمایند. ایجاد ترک در لایه­ های کف خاکچال و گسترش آن به مرور زمان، قابلیت تراوایی در آستر را افزایش داده و ورود شیرآبه به محیط خاک و آب زیرزمینی را سرعت می­بخشد. از این رو اتخاذ راهکارهای مناسب جهت پیشگیری از ایجاد شبکه ترک ­ها و گسترش آن­ها در پوشش کف خاک‌چال بسیار ضرروی است. در این تحقیق با تمرکز بر مشخصات خاک­چال شهر مشهد و با استفاده از روش­ های آزمایشگاهی سعی شده است تا با افزودن مواد کامپوزیت فیبر پلی پروپیلن، میکروسیلیس و نانوسیلیس بهسازی آسترها صورت گیرد. روش آزمایشگاهی به ­کار رفته در این تحقیق بدین­ صورت است که پس از آماده­ سازی نمونه در جعبه آزمایش ساخته شده، بررسی وضعیت ترک ­های ناشی از خشک­ شدگی با عکس­برداری از طریق روش پردازش تصاویر صورت گرفته است. خاک شماره 1 مربوط به خاک اطراف، در حدود 9 کیلومتری خاک­چال اصلی مشهد که به­ عنوان دپوی خاک رس خاک­چال مشهد از آن استفاده می­شود. خاک شماره 2 خاک مربوط به خاک محل خاک­چال اصلی و مرکزی مشهد می­باشد. خاک شماره 3 به ­عنوان خاک منتخب به ­صورت ترکیبی از مونت­موریونیت (Montmorillonite) و کائولینیت (Kaolinite) به ­ترتیب به­نسبت وزنی 3 به 1 تشکیل شده است. نتایج نشان می­دهد با افزودن 8/0 درصد فیبر پروپریپلن ترک­ های خاک شماره دو 81%، ترک ­های خاک شماره یک 71% و ترک ­های خاک منتخب 72% کاهش یافته است. با توجه به نتایج بررسی­ ها مشخص گردید، افزودن مقدار بهینه مواد نانو و کامپوزیت اثر چشمگیری بر کاهش عرض ترک خاک رس خاکچال مشهد دارد. از این رو بهسازی خاک رس در کف این خاکچال ضروری بوده و نتایج و راهکارهای مناسب جهت بهبود شرایط در این مقاله ارائه شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Improvement of the Soil Clay at The Liner of The Landfill to Reduce Cracking Using Composite and Nano Materials

نویسندگان [English]

  • Hojat Dehestani 1
  • Abdolhosein Haddad 1
  • Hassan Karimi-Maleh 2
1 Faculty of Civil Engineering, Semnan University, Semnan, Iran
2 Department of Chemical Engineering, Laboratory of Nanotechnology, Quchan University of Technology, Iran
چکیده [English]

    Increasing waste production due to population growth, improper waste disposal in landfills and spread of pollution caused is one of the most important environmental problems in urban areas. By special layers and coatings in the body and bottom liner, the penetration of toxic and dangerous leachate of waste into the surroundings is prevented. The cracks in the bottom layers of the landfill and expansion over time increases the permeability of the liner and accelerates the entry of the leachate of waste into the soil and groundwater. Hence, it is very important to adopt appropriate measures to prevent the creation of a network of cracks and the expansion in the liner of the landfill.

کلیدواژه‌ها [English]

  • Liner of the landfill
  • Improvement
  • Composite materials
  • Reduce of crack width
  • Soil clay
Abdinezhad A, Askari S, Torabi H, Ehteshami A, “Laboratory evaluation of clay improvement with nanolime and lime to improve clay plasticity properties”, International Conference on Modern Research in Civil Engineering, Architecture and Urban Planning, Tehran, 2015.
Abdoli M, Safari A, Jalili Ghazizade M, “Providing a simple method for digital image processing to determine the crack severity index in dense clay soils”, Journal of Engineering Geology, Spring and Summer, 2011, 5 (1).
Al-Jeznawi D, Sanchez M, Al-Taie AJ, “Using image analysis technique to study the effect of boundary and environment conditions on soil cracking mechanism”, Geotechnical and Geological Engineering, 2021, 39, 25-36. https://doi.org/10.1007/s10706-020-01376-5.
Albrecht BA, Benson CH, “Effect of desiccation on compacted natural clays”, Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127 (1), 67-75. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:1(67)
An N, Tang CS, Cheng Q, Wang DY, Shi B, “Application of electrical resistivity method in the characterization of 2D desiccation cracking process of clayey soil”, Engineering Geology Journal, 2020, 265, 105416. https://doi.org/10.1016/j.enggeo.2019.105416
Atique A, Sanchez M, “Analysis of Cracking Behavior of Drying Soil”, 2nd International Conference on Environmental Science and Technology, IPCBEE 2011, 6, IACSIT Press, Singapore.
Badv k, “Principles of Landfill Engineering Landfill Design Fundamentals”, Urmia University Publications, 2013.
Behrooz Sarand F, Azarnia A, Soltani Jigheh H, Ebrahimiasl S, Dabiri R, “Physio-mechanical evaluation of Nano-soil as an additive to the sand-bentonite mixture for Tabriz city landfill liner”, AUT Journal of Civil Engineering, 2022, 6 (3) 359-368 https://doi.org/10.22060/ajce.2023.21129.5793
Changizi F, Haddad A, “Application of nano materials in improving geotechnical properties of soils: A review study”, Journal of Rehabilitation in Civil Engineering, 2023, 11 (4), 28-37. https://doi.org/10.22075/jrce.2023.28563.1720
Cheng Q, Tang CS, Zhu C, Li K, Shi B, “Drying-induced soil shrinkage and desiccation cracking monitoring with distributed optical fiber sensing technique”, Bulletin of Engineering Geology and the Environment, 2020, 79 (8), 3959-3970. https://doi.org/10.1007/s10064-020-01809-8
Fang H, Chaney Y, “Introduction to Environmental Geotechnology”, CRC Press, 2016.
Harianto T, Hayashi S, Du YJ, Suetsugu D, “Effects of fiber additives on the desiccation crack behavior of the compacted akaboku soil as a material for landfill cover barrier”, Water Air Soil Pollut, 2008, 194, 141-149. https://doi.org/10.1007/s11270-008-9703-2
Kalkan E, “Influence of silica fume on the desiccation cracks of compacted clayey soils”, Applied Clay Science, 2009, 43, 296-302. https://doi.org/10.1016/j.clay.2008.09.002
Liu C, Tang CS, Shi B, Suo WB, “Automatic quantification of crack patterns by image processing”, Computers and Geosciences Journal, 2013, 57, 77-80. https://doi.org/10.1016/j.cageo.2013.04.008.
Miller CJ, Rifai S, “Fiber reinforcement for waste containment soil liners”, Journal of Environmental Engineering, 2004, 130 (8), 891-895. https://doi.org/10.1061/(ASCE)0733-9372(2004)130:8(891)
Munfakh GA, Wyllie DC, “Ground improvement engineering-issues and selection”, 1999.
Negahdar A, Noori A, Yadegari S, “Laboratory study of the effect of nano silica on the creep behavior of soft clay”, Sharif Civil Engineering Journal, 2018, 2-34 (1/2), 133-141.
Omidi GH, Thomas JC, Brown KW, “Effect of desiccation cracking on the hydraulic conductivity of a compacted clay liner”, Water Air Soil Pollute, 1996, 89 (1-2), 91-103. https://doi.org/10.1007/BF00300424
Shit PK, Bhunia GS, Maiti R, “Soil crack morphology analysis using image processing techniques”, Journal of Modeling Earth Systems and Environment, 2015, 1 (35). https://doi.org/10.1007/s40808-015-0036-z
Rahimi H, Abbasi N, “Geotechnical engineering: problematic soils”, 2015, University of Tehran Press, 2015, (In Farsi).
Rajabi A, Khoram N, “A review of the geotechnical properties of soils improved with nanomaterials”, International Conference on Civil Engineering, Architecture and Urban Planning of Contemporary Iran, Tehran, 2017.
Shi B, Tang CS, Wang BJ, Jiang HT, “Development and mechanism of desiccation cracking of clayey soil under different temperatures”, Geological Journal of China Universities, 2009, 15 (2), 192-198. https://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX200902008.htm
Taha MR, Taha OME, “Influence of nano-material on the expansive and shrinkage soil behavior”, Journal of Nanoparticle Research, 2012. https://doi.org/10.1007/s11051-012-1190-0
Taha MR, “Recent Developments in Nanomaterials for Geotechnical and Geo environmental Engineering”, MATEC Web of Conferences, 2018, 149, 02004.
Tang CS, Shi B, Liu C, Zhao LZ, Wang BJ, “Influencing factors of geometrical structure of surface shrinkage cracks in clayey soils”, Engineering Geology Journal, 2008, 101 (3-4), 204-217. https://doi.org/10.1016/j.enggeo.2008.05.005
Tang CS, “Desiccation cracking of clayey soils”, Nanjing University, Nanjing, China, 2008.
Tang CS, Shi B, Cui YJ, Liu C, Gu K, “Desiccation cracking behavior of polypropylene fiber-reinforced clayey soil”, Canadian Geotechnical Journal, 2012, 49 (9), 1088-1101. https://doi.org/10.1139/t2012-067
Tang C, Zhu C, Cheng Q, Zeng H, Xu J, Tian B, Shi B, “Desiccation cracking of soils: A review of investigation approaches, underlying mechanisms, and influencing factors”, Earth-Science Reviews, 2021, 216 ,103586. https://doi.org/10.1016/j.earscirev.2021.103586
Tay YY, Stewart DI, Cousens TW, “Shrinkage and desiccation cracking in bentonite-sand landfill liners”, Engineering Geology Journal, 2001, 60 (1-4), 263-274. https://doi.org/10.1016/S0013-7952(00)00107-1
Tollenaar RN, Van Paassen LA, Jommi C, “Observations on the desiccation and cracking of clay layers”, Engineering Geology Journal, 2017, 230, 23-31. https://doi.org/10.1016/j.enggeo.2017.08.022
Torres MA, Armenteros E, Fernández R, Fernández P, “Digital image analysis for the estimation of cracked areas and the soil shrinkage characteristic curve in clay soils amended with composted sewage sludge”, Spanish Journal of Agricultural Research, 2004. https://doi.org/10.5424/sjar/2004023-101
Uday KV, Singh DN, “Investigation on cracking characteristics of fine-grained soils under varied environmental conditions”, Drying Technology Journal, 2013, 31 (11), 1255-1266. https://doi.org/10.1080/07373937.2013.785433
Vail M, Zhu C, Tang CS, Anderson L, Moroski M, Montalbo-Lomboy MT, “Desiccation cracking behavior of MICP-treated bentonite”, Geosciences, 2019, 9 (9), 385. https://doi.org/10.3390/geosciences9090385
Vogel HJ, Hoffmann H, Roth K, “Studies of crack dynamics in clay soil”, Geoderma, 2005, 125 (3-4), 203-211. https://doi.org/10.1016/j.geoderma.2004.07.009
Zeng H, Tang CS, Cheng Q, Zhu C, Yin LY, Shi B, “Drought-induced soil desiccation cracking behavior with consideration of basal friction and layer thickness”, Water Resour, 2020, 56 (7), e2019WR026948. https://doi.org/10.1029/ 2019WR026948