اثر متاکائولن بر پتانسیل واگرایی و پارامترهای ژئوتکنیکی خاک های واگرا

نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 گروه مهندسی عمران، دانشکده مهندسی عمران و منابع زمین ، دانشگاه آزاد اسلامی واحد تهران مرکزی

2 گروه مهندسی عمران، دانشکده مهندسی عمران و منابع زمین، دانشگاه آزاد اسلامی واحد تهران مرکزی

چکیده

امروزه یکی از دغدغه هایی که در پروژه های صنعتی و عمرانی در برخی مناطق جنوبی کشور مطرح است پدیده واگرایی می باشد. در این پدیده خاک های رسی واگرا تحت شرایطی خاص پراکنده شده و به سرعت شسته می شوند. با توجه به پیشرفت روز افزون در زمینه افزودنی های صنعتی و معدنی، در این پژوهش از متاکائولن جهت بهسازی خاک های واگرا استفاده شده است. بدین منظور نمونه هایی متشکل از درصد وزنی صفر،6،4،2و 8 درصد وزن خاک، به خاک رس شدیدا واگرا افزوده شد و پس از پایان دوره عمل آوری 7 روزه ، نمونه ها تحت آزمایش های مختلف ژئوتکنیکی قرار گرفتند و میزان تغییرات پتانسیل واگرایی و همچنین بهبود ویژگی های ژئوتکنیکی خاک مورد ارزیابی قرار گرفت. نتایج حاکی از آن است که با افزودن 6 تا 8 درصد متاکائولن به خاک، پتانسیل واگرایی بطور قابل توجهی کاهش می یابد. در این حالت مطابق نتایج آزمایش هیدرومتری دوگانه شدت پتانسیل واگرایی حدود 55 درصد کاهش یافت و در محدوده واگرایی کم قرار گرفت این موضوع در آزمایش کرامب هم صادق بود . در ادامه نتایج آزمایش حدود اتربرگ نشانگر کاهش شاخص خمیری و در نتیجه کاهش انعطاف پذیری نمونه ها است. بررسی نتایج آزمایش تراکم نشان­دهنده آن بوده است که با کاهش رطوبت بهینه، حداکثر دانسیته خشک خاک افزایش یافته که همین امر سبب افزایش تراکم خاک در نتیجه ی واکنش پذیری بالا متاکائولن با هیدروکسید کلسیم و تشکیل ژل هیدرات سیلیکات کلسیم بوده است که در نهایت سبب افزایش مقاومت محصور نشده خاک و بهبود مشخصات ژئوتکنیکی خاک واگرا گردیده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of Metakaolin on Dispersivity Potential and Geotechnical Parameters of Dispersive Soils

نویسندگان [English]

  • Ahmadreza Soltanian 1
  • Amir ali Zad 2
  • Maryam Yazdi 2
  • Amin Tohidi 2
1 Department of Civil Engineering, Faculty of Civil and Earth Resources Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
2 Department of Civil Engineering, Faculty of Civil and Earth Resources Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
چکیده [English]

Nowadays, the dispersion phenomenon is one of the main concerns for industrial and civil projects in southern regions of Iran. In this phenomenon, dispersive clay soil, under special situation, is dispersed and rapidly washed away. Due to the continuous developments in industrial and mineral additives, in this study metakaolin was used for soil improving dispersive soils. Researchers have always studied the use of additives for soil improvement. However, using cheap and environmentally friendly additives, such as natural pozzolans, are more desired. Natural pozzolans, are silica and alumina-silica materials with no apparent cement property but in presence of water, they make bonds with hydrate calcium and have cement properties. By reviewing previous studies, it can be seen that using pozzolanic materials are environmentally friendly, reduces energy consumption, reduces costs, reduces permeability and increases the chemical resistance of concrete. Metakaolin is a natural pozzolan with high permeability, with 50-55% SiO2 which reacts with Ca(OH)2 in room temperature and produces the calcium silicate hydrate (CSH) gel. Kolovos et al (2013) investigated mechanical properties of a soil improved by metakaolin. In this study, the optimum mix design of cement soil and its mechanical properties are investigated and the results show improved mechanical properties of soil. Wu et al (2016) studied the effect of metakaolin and cement on MHS strength and soil structure. The results show that adding metakaolin to soil reduces its sensitivity to water and significantly increased the uniaxial compressive strength and tensile strength of soil. Wianglor et al (2017) reviewed the effects of alkaline active metakaolin on compressive strength and particle structure of the improved mortar in 23 and 60 centigrade. The results show that increasing the amount of metakaolin and the temperature results in increased compressive strength and silicate and aluminate gel is apparently seen in mortar particle structure. In recent years, the compound effect of cement and metakaolin have rarely been studied, however there is no record for using metakaolin alone for soil improvement. This study aims to investigate the effects of different metakaolin percentages on reducing the clay dispersion potential, using crumb test, hydrometry, and also reviewing its geotechnical properties, such as Atterberg limits, maximum dry density, optimum humidity percentage, uniaxial compressive strength, and its validation using SEM.

کلیدواژه‌ها [English]

  • Dispersive soil
  • metakaolin
  • Soil stabilization
  • Double hydrometric test
  • Crumb test
ASTM_D2487, “Standard practice for classification of soils for engineering purposes”, Unified Soil Classification System, ASTM International, West Conshohocken, PA, 2017. https://doi.org/10.1520/D2487-17E01
ASTM_D4318, “Standard test methods for liquid limit, plastic limit, and plasticity index of soils”, ASTM International, West Conshohocken, PA, 2017. https://doi.org/10.1520/D4318-17E01
ASTM_D2166, “Standard test method for unconfined compressive strength of cohesive soil”, ASTM International, West Conshohocken, PA, 2016. https://doi.org/10.1520/D2166D2166M-16
ASTM_D698, “Standard test methods for laboratory compaction characteristics of soil using standard effort”, ASTM International, West Conshohocken, PA, 2014. https://doi.org/10.1520/D0698-12R21
ASTM_D854, “Standard test methods for specific gravity of soil solids by water pycnometer”, ASTM Internationa, West Conshohocken, PA, 2014. https://doi.org/0.1520/D0854-23
ASTM_D6572-00, “Standard test method for determining dispersive characteristics of clayey soils by crumb test”, ASTM Internationa, West Conshohocken, PA, 2014. https://doi.org/ 10.1520/D6572-21
ASTM_D4221-99, “Standard test method for dispersive characteristics of clay soil by double hydrometer”, ASTM Internationa, West Conshohocken, PA, 2014. https://doi.org/10.1520/D4221-11
Ashiq SZ, Akbar A, Farooq K, Mujtaba H, “Sustainable improvement in engineering behavior of siwalik clay using industrial waste glass powder as additive”, Case Studies in Construction Materials, 16, e00883, 2022. https://doi.org/10.1016/j.cscm.2022.e00883
Afrasiabian A, Salimi M, Movahedrad M, Vakili AH, “Assessing the impact of GBFS on mechanical behaviour and microstructure of soft clay”, International Journal of Geotechnical Engineering, 2021, 15, 327-337.
https://doi.org/10.1080/19386362.2019.1565393
Abbaslou H, Hadifard H, Ghanizadeh AR, “Effect of cations and anions on flocculation of dispersive clayey soils”, Heliyon, 6, e03462, 2020. https://doi.org/10.1016/j.cscm.2022.e00883
Arrieta Baldovino JDJ, Dos Santos Izzo R, Da Silva ÉR, Lundgren Rose J, “Sustainable use of recycled-glass powder in soil stabilization”, Journal of Materials in Civil Engineering, 2020, 32, 04020080. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003081
Abbasi N, Farjad A, Sepehri S, “The use of nanoclay particles for stabilization of dispersive clayey soils”, Geotechnical and Geological Engineering, 2018, 36, 327-335. https://doi.org/10.1007/s10706-017-0330-9
Arulrajah A, Piratheepan J, Aatheesan T, Bo M, “Geotechnical properties of recycled crushed brick in pavement applications”, Journal of Materials in Civil Engineering, 2011, 23, 1444-1452. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000319
Baldovino JJ, Izzo RL, Rose JL, Domingos MD, “Strength durability and microstructure of geopolymers based on recycled-glass powder waste and dolomitic lime for soil stabilization”, Construction and Building Materials, 2021, 271, 121874. https://doi.org/10.1016/j.conbuildmat.2020.121874
Blayi RA, Sherwani AFH, Ibrahim HH, Faraj RH, Daraei A, “Strength improvement of expansive soil by utilizing waste glass powder”, Case Studies in Construction Materials, 2020, 13, e00427. https://doi.org/10.1016/j.cscm.2020.e00427
Benny JR, Jolly J, Sebastian JM, Thomas M, “Effect of glass powder on engineering properties of clayey soil”, International Journal of Engineering Research and Technology, 2017, 6.
Bahmani SH, Huat BB, Asadi A, Farzadnia N, “Stabilization of residual soil using SiO2 nanoparticles and cement”, Construction and Building Materials, 2014, 64, 350-359. https://doi.org/10.1016/j.conbuildmat.2014.04.086
Bell F, Maud R, “Dispersive soils: a review from a South African perspective”, Quarterly Journal of Engineering Geology and Hydrogeology, 1994, 27, 195-210. https://doi.org/10.1144/GSL.QJEGH.1994.027.P3.02
Canakci H, Aram AL, Celik F, “Stabilization of clay with waste soda lime glass powder”, Procedia Engineering, 2016, 161, 600-605. https://doi.org/10.1016/j.proeng.2016.08.705
Disfani M, Arulrajah A, Bo M, Sivakugan N, “Environmental risks of using recycled crushed glass in road applications”, Journal of Cleaner Production, 2012, 20, 170-179. https://doi.org/10.1016/j.jclepro.2011.07.020
Eberemu AO, Edeh JE, Gbolokun A, “The geotechnical properties of lateritic soil treated with crushed glass cullet”, Advanced Materials Research, 2013, 20,170-179. https://doi.org/10.4028/www.scientific.net/AMR.824.21
Gidday BG, Mittal S, “Improving the characteristics of dispersive subgrade soils using lime”, Heliyon, 6, e03384, 2020.
Ibrahim HH, Mawlood YI, Alshkane YM, “Using waste glass powder for stabilizing high-plasticity clay in Erbil city-Iraq”, International Journal of Geotechnical Engineering, 2021, 15, 496-503. https://doi.org/10.1080/19386362.2019.1647644
Javed SA, Chakraborty S, “Effects of waste glass powder on subgrade soil improvement”, World Scientific News, 2020, 144, 30-42.
Keramatikerman M, Chegenizadeh A, Nikraz H, “Soil stabilisation using glass powder”, International Journal of Engineering Applied Sciences and Technology, 2020. https://doi.org/10.33564/IJEAST.2020.v04i11.060
Liu J, Chen P, Lu Z, Yao H, “Experimental Study on the Modification Mechanisms of Dispersive Soil Treated with Hydroxyl Aluminum”, Geofluids, 2022. https://doi.org/10.1155/2022/2680516
Mujtaba H, Khalid U, Farooq K, Elahi M, Rehman Z, Shahzad HM, “Sustainable utilization of powdered glass to improve the mechanical behavior of fat clay”, Journal of Civil Engineering, 2020, 24, 3628-3639. https://doi.org/10.1007/s12205-020-0159-2
Moravej S, Habibagahi G, Nikooee E, Niazi A, “Stabilization of dispersive soils by means of biological calcite precipitation”, Geoderma, 2018, 315, 130-137.
Ouhadi VR, Yong RN, Amiri M, Ouhadi MH, “Pozzolanic consolidation of stabilized soft clays”, Applied Clay Science, 2014, 95, 111-118.
Ouhadi V, Goodarzi A, “Assessment of the stability of a dispersive soil treated by alum”, Engineering Geology, 2006, 85, 91-101.
Sherard JL, Dunnigan LP, Decker RS, “Identification and nature of dispersive soils”, Journal of the Geotechnical Engineering Division, 1976, 102, 287-301. https://doi.org/10.1061/AJGEB6.0000256
Vakili AH, Shojaei SI, Salimi M, Bin Selamat MR, Farhadi MS, “Contact erosional behaviour of foundation of pavement embankment constructed with nanosilica-treated dispersive soils”, Soils and Foundations, 2020, 60, 167-178.