نوع مقاله : مقاله کامل پژوهشی
نویسندگان
1 گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه ارومیه
2 گروه هیدرولوژی و منابع آب، دانشکده مهندسی آب، دانشگاه شهید چمران اهواز
چکیده
کلیدواژهها
موضوعات
عنوان مقاله [English]
نویسندگان [English]
Drought is a severe hydrological event that can cause serious problems in human life. In this context, it can have adverse effects on water supply and quality, public health, agricultural productivity, land degradation, desertification, famine, etc. (Madadgar and Moradkhani, 2014; Li et al., 2020). In a general classification, drought events are classified into four different categories, meteorological, hydrological, agricultural and socio-economic droughts (Wilhite and Glantz, 1985; Khadr, 2016). Some of the well-known and common meteorological drought indices in drought monitoring include Palmer Drought Severity Index (PDSI), Drought Identification Index (RDI), Standardized Precipitation Index (SPI) and Standard Precipitation Evapotranspiration Index. Considering the significant role of evaporation and transpiration in the water balance, it is necessary to consider its effect when studying drought in a particular region. Based on this, RDI, which includes both precipitation and evaporation and transpiration, can be considered as a reliable indicator for drought monitoring (Moeinifar et al., 1400). According to importance of drought as a natural phenomenon in hydrological and meteorological studies, its monitoring and forecasting with a suitable approach can be important. The main role of Drought prediction in risk management, reducing the effects of drought on existing water resources and their optimal use, the possibility of rational decision-making by decision makers to minimize the damages caused by drought, as well as planning and managing resource projects. It has water. (Khadr et al., 2016; Madrigal et al., 2018; Beyaztas and Yaseen, 2019). Among the models worked till date, single Kstar and GPR models are the newest models for drought prediction.
کلیدواژهها [English]