مقایسه حد روانی حاصل از روش جام کاساگرانده و نفوذ مخروط برای خاک‌های مخلوط ماسه و رس

نوع مقاله : مقاله کامل پژوهشی

نویسندگان

گروه مهندسی عمران، واحد سمنان، دانشگاه آزاد اسلامی

چکیده

حد روانی (Liquid Limit) یکی از ویژگی­ های مهم خاک است و تأثیر زیادی بر رفتار آن دارد. حد روانی به­ عنوان نقطه ­ای است که رفتار خاک رس از حالت خمیری به مایع تغییر می­ کند. مقاومت برشی این خاک در رطوبت نزدیک به حد روانی، بسیار کم است. بنابراین تعیین دقیق خواص خمیری خاک دارای اهمیت فراوانی است. در این پژوهش آزمایشگاهی، تأثیر ماسه بر حد روانی خاک مخلوط، رابطه بین حد روانی و درصد ماسه و رابطه بین حد روانی روش ­های نفوذ مخروط (Cone penetrometer) و جام کاساگرانده (Casagrande) با پایه سخت مورد ارزیابی قرار گرفته است. مقدار حد روانی برای رس بنتونیت دستگاه کاساگرانده برابر 78 و دستگاه نفوذ مخروط برابر 87 به دست آمد. با افزایش درصد ماسه، حد روانی کاهش یافت، رابطه حد روانی برحسب درصد ماسه، خطی بود و مقدار ضریب تعیین (Coefficient of determination) برای آزمایش ­های کاساگرانده و نفوذ مخروط به ­ترتیب برابر 997/0 و 999/0 به­ دست آمد. در رس بنتونیت، حد روانی حاصل از دستگاه نفوذ مخروط حدود 12 درصد بیشتر از حد روانی حاصل از دستگاه کاساگرانده بود. با کاهش حد روانی خاک مخلوط، اختلاف بین نتایج حاصل از دو دستگاه آزمایش افزایش یافت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Comparison of Liquid Limit Obtained From Casagrande Cup Method and Cone Penetrometer for Sand and Clay Mixed Soils

نویسندگان [English]

  • Mahmoud Nikkhah Shahmirzadi
  • Ghasem Arabi
  • Minoo Zahra Hafezi
Department of Civil Engineering, Semnan Branch, Islamic Azad University, Semnan, Iran
چکیده [English]

The behavior of the cohesive soil depends on many factors. Atterberg limits play an important role in the evaluation and classification of clays. In this paper, the relationship between the Liquid limit of the cone penetrometer methods and Casagrande cup of sand and clay mixed soils has been evaluated. The main purpose of this study is to compare the Liquid limit values obtained from the hard-base Casagrande device with the cone penetration method and to present the relationship between the Liquid limit values obtained from the two methods in terms of the percentage of sand in the mixed soil.

کلیدواژه‌ها [English]

  • Liquid limit
  • Sand
  • Bentonite
  • Casagrande
  • Cone penetration
ASTM, D2216, “Standard test methods for laboratory determination of water (moisture) content of soil and rock by mass”, Annual Book of ASTM Standards, 2010.
ASTM, D422, “Standard Test Method for Particle-Size Analysis of Soils”, ASTM International, West Conshohocken, PA, 2007.
ASTM, D4318, “Standard test methods for liquid limit, plastic limit, and plasticity index of soils”, Annual Book of American Society for Testing and Material standards, West Conshohocken, USA, 2010.
Atterberg A, “Die plastizitat der Tone”, Internationall mitting boden. 1911, 4-37.
Belviso R, Ciampoli S, Cotecchia V, Federico A, “Use of the cone penetrometer to determine consistency limits”, Ground Engineering, 1985, 18 (5), 21-22.  https://worldcat.org/issn/00174653
Benbow J, Bridgwater J, “Paste flow and extrusion”, Clarendon Press, Oxford, 1993.
Bicalho KV, Gramelich JC, Cunha CLS, “Comparaç˜ao entre os valores do limite de liquidez obtidos pelos m´etodos de Casagrande e cone para solos argilosos brasileiros Comparison between Casagrande cup and cone penetrometer test for determining liquid limit of different Brazilian clays”, Comunicaç˜oes Geol´ogicas, Especial, 2014, 1099-1099
BSI 1377 Part 2 “Liquid limit-cone penetrometer method”, British Standard Institution, London, 2003.
BSI 1377 Part 2 “Liquid limit-cone penetrometer method”, British Standard Institution, London, 2003.
BSI 1377 Part 2 “Liquid limit-cone penetrometer method”, British Standard Institution, London, 2003.
Cabalar AF, Mustafa WS, “Fall cone tests on clay–sand mixtures”, Engineering Geology, 2015, 192, 154-165. https://doi.org/10.1016/j.enggeo.2015.04.009
Campbell DJ, “Liquid limit determination of arable topsoils using a drop-cone penetrometer”, Journal of Soil Science, 1975, 26 (3), 234-240. https://doi.org/10.1111/j.1365-2389.1975.tb01946.x
Casagrande A, “Notes on the design of the liquid limit device”, Geotechnique, 1958, 8 (2), 84-91. https://doi.org/10.1680/geot.1958.8.2.84
Casagrande A, “Research on the Atterberg limits of soils”, Public roads, 1932, 13 (8), 121-136.
Christaras B, “A comparison of the Casagrande and fall cone penetrometer methods for liquid limit determination in marls from Crete, Greece”, Engineering Geology, 1991, 31 (2), 131-142. https://doi.org/10.1016/0013-7952(91)90002-3
Claveau-Mallet D, Duhaime F, Chapuis RP, “Practical considerations when using the Swedish fall cone”, Geotechnical Testing Journal, 2012, 35 (4), 618-628. https://doi.org/10.1520/GTJ104178
Di Matteo L, “Liquid limit of low-to medium-plasticity soils: comparison between Casagrande cup and cone penetrometer test”, Bulletin of Engineering Geology and the Environment, 2012, 71, 79-85. https://doi.org/10.1007/s10064-011-0412-5
Díaz E, Pastor JL, Rabat Á, Tomás R, “Machine learning techniques for relating liquid limit obtained by Casagrande cup and fall cone test in low-medium plasticity fine grained soils”, Engineering Geology, 2021, 294, 106381.
        https://doi.org/10.1016/j.enggeo.2021.106381

Dragoni W, Prosperini N, Vinti G, “Some observations on the procedures for the determination of the liquid limit: an application on Plio-Pleistocenic clayey soils from Umbria region (Italy)”, Italian Journal of Engineering Geology and Environment, 2008, 185-197.

El-Shinawi A, “A comparison of liquid limit values for fine soils: A case study at the north Cairo-Suez district, Egypt”, Journal of the Geological Society of India, 2017, 89, 339-343.
        https://doi.org/10.1007/s12594-017-0608-9
Feng TW, “Using a small ring and a fall-cone to determine the plastic limit”, Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130 (6), 630-635. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:6(630)
Fojtová L, Marschalko M, Franeková R, Kovář L, “Study of compatibility of methods for liquid limit measurement according to Czech State Standard and newly adopted European Standard, Geosci”, Eng., 2009, LV (1), 55-68.
Grønbech G, Nielsen BN, Ibsen LB, “Comparison of plasticity index of Søvind marl found by use of Casagrande cup, fall cone apparatus and loss on ignition”, Department of Civil Engineering, Aalborg University, DCE Technical Reports, 2010, 87, 14.
Grønbech GL, Nielsen BN, Ibsen LB, “Comparison of liquid limit of highly plastic clay by means of Casagrande and Fall Cone Apparatus”, Age (mil. Years), 2011, 40, 46-53.
Hrubesova E, Lunackova B, Brodzki O, “Comparison of liquid limit of soils resulted from Casagrande test and modificated cone penetrometer methodology”, Procedia Engineering, 2016, 142, 364-370. https://doi.org/10.1016/j.proeng.2016.02.063
Karakan E, “Relationships among plasticity, clay fraction and activity of clay–sand mixtures”, Arabian Journal of Geosciences, 2022, 15 (4), 1-16. https://doi.org/10.1007/s12517-022-09482-9
Kayabali K, Akturk O, Fener M, Ozkeser A, Ustun AB, Dikmen O, Harputlugil F, Asadi R, “Determination of Atterberg limits using newly devised mud press machine”, Journal of African Earth Sciences, 2016, 116, 127-133.
Kollaros G, “Liquid limit values obtained by different testing methods”, Bulletin of the Geological Society of Greece, 2016, 50 (2), 778-787.
        https://doi.org/10.12681/bgsg.11784
Leroueil S, Le Bihan JP, “Liquid limits and fall cones”, Canadian Geotechnical Journal, 1996, 33 (5), 793-798. https://doi.org/10.1139/t96-104-324
Mishra AK, Ohtsubo M, Li LY, Higashi T, “Influence of various factors on the difference in the liquid limit values determined by Casagrande’s and fall cone method”, Environmental Earth Sciences, 2012, 65, 21-27. https://doi.org/10.1007/s12665-011-1061-5
Nagaraj TS, Murthy BRS, “Liquid limit determination further simplified”, Technical note”, ASTM Geotechnical Testing Journal, 1987, 10 (3), 302-307. https://doi.org/10.1520/GTJ10946J
Niazi FS ros, Pinan-Llamas A, Cholewa C, Amstutz C, “Liquid limit determination of low to medium plasticity Indiana soils by hard base Casagrande percussion cup vs. BS fall-cone methods”, Bulletin of Engineering Geology and the Environment, 2020, 79 (4), 2141-2158.
        https://doi.org/10.1007/s10064-019-01668-y
O’Kelly BC, “Review of recent developments and understanding of Atterberg limits determinations”, Geotechnics, 2021, 1 (1), 59-75.
Orhan M, Ozer M, Is¸ik NS, “Comparison of casagrande and cone penetration tests for the determination of the liquid limit of natural soils”, Journal of the Faculty of Engineering and Architecture of Gazi University, 200621, 711-720.
https://kutuphane.dogus.edu.tr/mvt/pdf.php
Özer M, “Comparison of liquid limit values determined using the hard and soft base Casagrande apparatus and the cone penetrometer”, Bulletin of Engineering Geology and the Environment, 2009, 68 (3), 289-296. https://doi.org/10.1007/s10064-009-0191-4
Prakash K, Sridharan A, “Critical appraisal of the Casagrande percussion and fall cone liquid limits of fine-grained soils”, International Journal of Geotechnical Engineering, 2019, 1-9.
        https://doi.org/10.1080/19386362.2019.1684617
Prakash K, Sridharan A, “Critical appraisal of the Casagrande percussion and fall cone liquid limits of fine-grained soils”, International Journal of Geotechnical Engineering, 2022, 16 (3), 318-326. https://doi.org/10.1080/19386362.2019.1684617
Rehman HU, Pouladi N, Pulido Moncada M, Arthur E, “Repeatability and agreement between methods for determining the Atterberg limits of fine‐grained soils”, Soil Science Society of America Journal, 2020, 84 (1), 21-30. https://doi.org/10.1002/saj2.20001
Sampson LR, Netterberg F, “The cone penetration index: a simple new soil index test to replace the plasticity index”, In International Conference on Soil Mechanics and Foundation Engineering, 1985, 11, 1041-1048.
Seed HB, Woodward RJ, Lundgren R, “Fundamental aspects of the Atterberg limits”, Journal of the Soil Mechanics and Foundations Division, 1964, 90 (6), 75-106. https://doi.org/10.1061/JSFEAQ.0000685
Silva ACS, “Definiç˜ao de padr˜oes de plasticidade de solos atrav´es do cone de penetraç˜ao, por comparaç˜ao com o m´etodo de Casagrande (Doctoral dissertation)”, Instituto Superior de Engenharia do Porto, 2013.
 https://doi.org/10.46429/jaupr.v105i2.20086
Snyder VA, Vázquez MA, “Comparison of the casagrande and drop-cone penetrometer methods for measuring the liquid limit in puerto rican soils1”, 2021, 263-268.
https://doi.org/10.46429/jaupr.v105i2.20086
Sowers GF, Vesic A, Grandolfi M, “Penetration tests for liquid limit”, Papers on Soils, 1959, 216-24.
Spagnoli G, “Comparison between Casagrande and drop-cone methods to calculate liquid limit for pure clay”, Canadian Journal of Soil Science, 2012, 92, 859-864. https://doi.org/10.4141/cjss2012-011
Sridharan A, Prakash K, “Percussion and cone methods of determining the liquid limit of soils: controlling mechanisms”, Geotechnical Testing Journal, 2000, 23 (2), 236-244. https://doi.org/10.1520/GTJ11048J
Straż G, “The effect of methodology on determining the liquid limits values of selected organic soils”, Archives of Civil Engineering, 2022, 459-477.
Tan TS, Goh TC, Karunaratne GP, Lee SL, “Shear strength of very soft clay-sand mixtures”, Geotechnical Testing Journal, 1994, 17 (1), 27-34.
Wasti Y, Bezirci MH, “Determination of the consistency limits of soils by the fall cone test”, Canadian Geotechnical Journal, 1986, 23 (2), 241-246. https://doi.org/10.1139/t86-033
Yu HS, Mitchell JK, “Analysis of cone resistance: review of methods”, Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124 (2), 140-149. https://doi.org/10.1061/(ASCE)1090- 0241(1998)124:2(140)
Zentar R, Abriak NE, Dubois V, “Effects of salts and organic matter on Atterberg limits of dredged marine sediments”, Applied Clay Science. 2009, 42, 391-397. https://doi.org/10.1016/j.clay.2008.04.003