تصفیه فاضلاب حاوی آلاینده سخت تجزیه پذیر از طریق فرایند اکسیداسیون پیشرفته ازن زنی

نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 دانشکده مهندسی عمران، دانشگاه صنعتی نوشیروانی بابل

2 دانشکده مهندسی علوم زمین، دانشگاه صنعتی اراک

چکیده

کلروفنل­ ها از آلاینده ­های آلی سخت تجزیه ­پذیر هستند که با طول عمر بالا و تجزیه ­پذیری کم، در محیط زیست، خطرات بسیاری برای جانداران به ­وجود می­ آورند. ازن ­زنی یکی از روش­ های اکسیداسیون پیشرفته می­ باشد که دارای قدرت بالایی برای حذف این نوع آلاینده ها است. در این پژوهش حذف 4-کلروفنل (4-Chlorophenol) با فرایند ازن­زنی بررسی شده ­است. با توجه به مدل فیزیکی فرایند، مدل ریاضی راندمان حذف آلاینده با استفاده از روش سطح پاسخ ارائه شده است. پارامترهای زمان، غلظت 4- کلروفنل، مقدار گاز ازن ورودی و pH به­ عنوان پارامترهای مستقل و راندمان حذف آلاینده به­ عنوان پارامتر وابسته در نظر گرفته شد. بدین ­ترتیب، اثر هر یک از متغیرهای مستقل و اثر هم ­زمان آن­ها بر متغیر وابسته و همچنین اثر متغیرهای مستقل بر یکدیگر نیز ارزیابی شده ­است. جهت انجام آزمایش­ ها از راکتور ناپیوسته استفاده گردید. با توجه به نتایج آزمایش ­ها، شرایط بهینه آزمایش در غلظت آلاینده برابر 35 میلی­گرم بر لیتر، pH برابر 11، مقدار گاز ازن 5 گرم بر ساعت و زمان 30 دقیقه به ­دست آمد که منجربه حذف 52/93% آلاینده شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Treatment of Wastewater Containing Persistent Organic Pollutants Through the Advanced Oxidation Process (Ozonation)

نویسندگان [English]

  • Amir Masoud Yaseri 1
  • Farhad Qaderi 1
  • Behnoosh Khataei 2
1 Faculty of Civil Engineering, Babol Noshirvani University of Technology, Babol, Iran
2 Faculty of Earth Sciences Engineering, Arak University of Technology, Arak, Iran
چکیده [English]

By cities development, population increase and industries expansion, the importance of controlling organic and phenolic pollutants is increasing. Chlorophenols have a high absorption by river sediments and remain stable due to their long life. Different methods such as absorption by adsorbents, absorption in a solvent, ion exchange, membrane process, reverse osmosis and electrochemical process have been presented to remove phenolic compounds. Today, instead of the traditional and costly methods, advanced oxidation processes (AOPs) are used to treat toxic organic compounds (Sheikholeslami et al., 2020). Ozonation has a good effect on the oxidation of resistant pollutants due to its higher oxidation potential and formation of secondary oxidizers (Yang et al., 2020; Liang et al., 2021). Nowadays, the environmental effects of various industrial factors have been investigated many times through modeling (Babanezhad et al., 2017; Ebrahimi Ghadi et al., 2019; Ebrahimi and Qaderi, 2021).
Response surface methodology (RSM) is a set of mathematical and statistical techniques used for regression model and evaluation of parameters interactions, development and optimization of processes (Ashrafi et al., 2015; Miranzadeh et al., 2020). RSM is a powerful method to determine the influence of variables on the pollutant removal process and can reveal the factors by greater impact on the process (Fard et al., 2012). One of its main objectives is to determine the optimum conditions of the process (Mourabet et al., 2012). According to the review of other studies, in this research, the removal of 4-chlorophenol was investigated by the ozonation method and under laboratory conditions. For this purpose, after designing the experiment with the response surface methodology, the interactions of the determined independent variables, the optimum conditions and the proposed model were evaluated.

کلیدواژه‌ها [English]

  • Wastewater
  • Ozonation
  • Advanced oxidation
  • Persistent organic pollutants
  • Experiment design
Ashrafi SD, Kamani H, Arezomand, HS, Yousefi N, Mahvi AH, “Optimization and modeling of process variables for adsorption of Basic Blue 41 on NaOH-modified rice husk using response surface methodology”, Desalination and Water Treatment, 2016, 57 (30), 14051-14059. https://doi.org/10.1080/19443994.2015.1060903
Babanezhad E, Amini Rad H, Hosseini Karimi SS, Qaderi F, “Investigating nitrogen removal using simultaneous nitrification-denitrification in transferring wastewater through collection networks with small-diameter pipes”, Water Pract Technol, 2017, 12, 396-405. https://doi.org/10.2166/wpt.2017.044
Bustillo-Lecompte C, “Advanced Oxidation Processes: Applications, Trends, and Prospects”, IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.85681
Chen X, Zhan S, Chen D, He C, Tian S, Xiong Y, “Grey Fe-CeO2-σ for boosting photocatalytic ozonation of refractory pollutants: Roles of surface and bulk oxygen vacancies”, Applied Catalysis B: Environmental, 2021, 286, 119928. https://doi.org/10.1016/j.apcatb.2021.119928
Cheng B, Zhu N, Fan R, Zhou C, Zhang G, Li W, Ji K, “Computer aided optimum design of rubber recipe using uniform design”, Polymer testing, 2002, 21 (1), 83-88. https://doi.org/10.1016/S0142-9418(01)00052-6
Cheng Y, Sun H, Jin W, Xu N, “Photocatalytic degradation of 4-chlorophenol with combustion synthesized TiO2 under visible light irradiation”, Chemical Engineering Journal, 2007, 128 (2-3), 127-133. https://doi.org/10.1016/j.cej.2006.09.009
Dabbaghi F, Rashidi M, Nehdi ML, Sadeghi H, Karimaei M, Rasekh H, Qaderi F, “Experimental and informational modeling study on flexural strength of eco-friendly concrete incorporating coal waste”, Sustainability, 2021, 13 (13), 7506. https://doi.org/10.3390/su13137506
Dixit A, Mungray AK, Chakraborty M, “Photochemical oxidation of phenol and chlorophenol by UV/H2O2/TiO2 process: a kinetic study”, 2nd International Conference on Chemical, Biological and Environmental Engineering, 2010, IEEE, 153-157. https://doi.org/10.1109/ICBEE.2010.5650921
Ebrahimi Ghadi M, Qaderi F, Babanezhad E, “Prediction of mortality resulted from NO2 concentration in Tehran by Air Q+ software and artificial neural network”, International Journal of Environmental Science and Technology, 2019, 16 (3), 1351-1368. https://doi.org/10.1007/s13762-018-1818-4
Essam T, Amin MA, El Tayeb O, Mattiasson B, Guieysse B, “Sequential photochemical-biological degradation of chlorophenols”, Chemosphere, 2007, 66 (11), 2201-2209. https://doi.org/10.1016/j.chemosphere.2006.08.036
Fan W, An W, Huo M, Xiao D, Lyu T, Cui J, “An integrated approach using ozone nanobubble and cyclodextrin inclusion complexation to enhance the removal of micropollutants”, Water Research, 2021, 196, 117039. https://doi.org/10.1016/j.watres.2021.117039
Fard ED, Jafari AJ, Kalantari RR, Gholami MITRA, Esrafili A, “Photocatalytic removal of aniline from synthetic wastewater using ZnO nanoparticle under ultraviolet irradiation”, Iranian Journal of Health and Environment, 2012, 5 (2), 167-178.
Ferreira SC, Bruns RE, Ferreira HS, Matos GD, David JM, Brandão GC, da Silva EP, Portugal LA, Dos Reis PS, Souza AS, Dos Santos WNL, “Box-Behnken design: an alternative for the optimization of analytical methods”, Analytica Chimica Acta, 2007, 597 (2), 179-186. https://doi.org/10.1016/j.aca.2007.07.011
Gholizadeh AM, Kermani M, Gholami M, Farzadkia M, “Comparative investigation of 2-ChloropHenol and 4-Chrorophenol removal using granulated activated Carbon and Rice Husk Ash”, Tolooebehdasht, 2013, 11 (3), 66-78.
Granato D, Ribeiro JCB, Castro IA, Masson ML, “Sensory evaluation and physicochemical optimization of soy-based desserts using response surface methodology”, Food Chemistry, 2010, 121 (3), 899-906. https://doi.org/10.1016/j.foodchem.2010.01.014
Guzmán IC, Rodríguez JL, Poznyak T, Chairez I, Hernández I, Hernández RT, “Catalytic ozonation of 4-chlorophenol and 4-phenolsulfonic acid by CeO2 films”, Catalysis Communications, 2020, 133, 105827. https://doi.org/10.1016/j.catcom.2019.105827
Häggblom M, Salkinoja-Salonen M, “Biodegradability of chlorinated organic compounds in pulp bleaching effluents”, Water Science and Technology, 1991, 24 (3-4), 161-170. https://doi.org/10.2166/wst.1991.0472
Kermani M, Gholami M, Gholizade A, Farzadkia M, Esrafili A, “Effectiveness of Rice Husk Ash in Removal of Phenolic Compounds from Aqueous Solutions, Equilibrium and Kinetics Studies”, Iranian Journal of Health and Environment, 2012, 5 (2).
Khalegh R, Qaderi F, “Optimization of the effect of nanoparticle morphologies on the cost of dye wastewater treatment via ultrasonic/ photocatalytic hybrid process”, Applied Nanoscience, 2019, 9, 1869-1889. https://doi.org/10.1007/s13204-019-00984-9
Liang Z, Xu X, Cao R, Wan Q, Xu H, Wang J, Lin Y, Huang T, Wen G, “Synergistic effect of ozone and chlorine on inactivating fungal spores: Influencing factors and mechanisms”, Journal of Hazardous Materials, 2021, 420, 126610.
López A, Pic JS, Benbelkacem H, Debellefontaine H, “Influence of t-butanol and of pH on hydrodynamic and mass transfer parameters in an ozonation process”, Chemical Engineering and Processing: Process Intensification, 2007, 46 (7), 649-655. https://doi.org/10.1016/j.cep.2006.08.010
Miranzadeh M, Afshari F, Khataei B, Kassaee M, “Adsorption and photocatalytic removal of arsenic from water by a porous and magnetic nanocomposite: Ag/TiO2/Fe3O4@ GO”, Advanced Journal of Chemistry, Section A, 2020, 3 (4), 408-421. https://doi.org/10.33945/SAMI/AJCA.2020.4.3
Mohammadi A, Asgari G, Almasi H, “Removal of 2, 4 di-chlorophenol using persulfate activated with ultrasound from aqueous solutions”, Journal of Environmental Health Engineering, 2014, 1 (4), 259-270.
Mourabet M, El Rhilassi A, El Boujaady H, Bennani-Ziatni M, El Hamri R, Taitai A, “Removal of fluoride from aqueous solution by adsorption on apatitic tricalcium phosphate using Box-Behnken design and desirability function”, Applied Surface Science, 2012, 258 (10), 4402-4410. https://doi.org/10.1016/j.apsusc.2011.12.125
Pera-Titus M, Garcı́a-Molina V, Baños MA, Giménez J, Esplugas S, “Degradation of chlorophenols by means of advanced oxidation processes: a general review”, Applied Catalysis B: Environmental, 2004, 47 (4), 219-256. https://doi.org/10.1016/j.apcatb.2003.09.010
Schumacher J, Pi YZ, Jekel M, “Ozonation of persistent DOC in municipal WWTP effluent for groundwater recharge”, Water Science and Technology, 2004, 49 (4), 305-310. https://doi.org/10.2166/wst.2004.0291
Sheikholeslami Z, Yousefi Kebria D, Qaderi F, “Application of γ-Fe2O3 nanoparticles for pollution removal from water with visible light”, Journal of Molecular Liquids, 2020, 299, 112-118. https://doi.org/10.1016/j.molliq.2019.112118
Tamadoni A, Qaderi F, “Optimization of soil remediation by ozonation for PAHs contaminated soils”, Ozone: Science and Engineering, 2019, 41 (5), 454-472. https://doi.org/10.1080/01919512.2019.1615865
Trapido M, Veressinina Y, Hentunen JK, Hirvonen A, “Ozonation of chlorophenols: kinetics, by-products and toxicity”, Environmental technology, 1997, 18 (3), 325-332. https://doi.org/10.1080/09593331808616543
Wang L, Qi C, Lu Y, Arowo M, Shao L, “Degradation of Bisphenol A by ozonation in a rotating packed bed: Modeling by response surface methodology and artificial neural network”, Chemosphere, 2022, 286, 131702. https://doi.org/10.1016/j.chemosphere.2021.131702
Yang J, Luo C, Li T, Cao J, Dong W, Li J, Ma J, “Superfast degradation of refractory organic contaminants by ozone activated with thiosulfate: Efficiency and mechanisms”, Water Research, 2020, 176, 115751. https://doi.org/10.1016/j.watres.2020.115751