تعیین بسامد ساختمان های بلند هرمی با سیستم لوله در لوله و لوله دسته‌بندی‌شده به روش تحلیلی

نوع مقاله : یادداشت پژوهشی

نویسندگان

1 گروه مهندسی عمران، واحد پارس آباد مغان، دانشگاه آزاد اسلامی، پارس آباد

2 گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه محقق اردبیلی

3 گروه مهندسی عمران دانشکده فنی و مهندسی دانشگاه محقق اردبیلی

چکیده

سیستم لوله ­ای یکی از سیستم ­های سازه ­ای مناسب برای برج ­ها و ساختمان­ هایی با ارتفاع بالاست که خود دارای انواع مختلفی می باشد. هدف از این مطالعه به­ دست آوردن یکی از ویژگی­ های مهم دینامیکی یعنی بسامد طبیعی (ω) برای تعدادی از ساختمان­ های بلند با سیستم لوله­ ای، لوله­ ای هرمی است که یک روش تقریبی بوده و فرمول ­های مربوطه جدید با استفاده از روش پیشنهادی و معادله ­های دیفرانسیل محاسبه بسامد طبیعی ساختمان­ های بلند هرمی با سیستم لوله در لوله و لوله دسته‌بندی‌شده و سازه لوله ­ای هرمی انجام می­ شود. به این منظور، تعداد 12 مدل با 2 سیستم سازه­ ای لوله در لوله و لوله دسته‌بندی‌شده و با 3 زاویه هرمی صفر، 23/1 و 45/2 درجه (انحراف از امتداد قایم) موردبررسی قرار گرفته و مدل­ ها به دو صورت عددی و روش تحلیلی مورد تجزیه‌وتحلیل قرار گرفته شدند. نتایج این مطالعه حاکی از آن است که با استفاده از روش تحلیلی معادلات دیفرانسیل بسامد طبیعی، به‌درستی محاسبه می­ شود و انطباق خوبی با نتایج عددی دارد، سازگاری بهتری با سازه ­های بدون زاویه هرمی و با ارتفاع بیشتر دارد و مقدار خطای محاسباتی حاصله بسیار کم می ­باشد. همچنین در این روش تحلیلی، کم­ترین خطا برای سیستم ­های لوله­ ای دسته‌بندی‌شده و بیشترین خطا برای سیستم لوله در لوله به­ دست آورده شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Determining the Frequency of Pyramidal Buildings with Tube-In-Tube and Bundled Tube Structures by Analytical Method

نویسندگان [English]

  • Mohammad Babaei 1
  • Yaghoub Mohammadi 2
  • Amin Ghannadiasl 3
1 Department of Civil Engineering, Pars Abad Moghan Branch, Islamic Azad University, Pars Abad, Iran
2 Faculty of Engineering, University of Mohaghegh Ardabili, Ardabil, Iran
3 Faculty of Engineering, University of Mohaghegh Ardabili, Ardabil, Iran
چکیده [English]

The research on tall buildings has been increased due to the demands of suitable spaces. The use of pyramidal architecture in tall structures has several benefits including the ability to lighten the adjacent buildings and prevention from the closure of the view in urban spaces. However, the seismic behavior of pyramidal tube structures requires a closer examination of their design and probable behavior under lateral loads. One of the most important parameters in the pyramidal tapered buildings is the calculation of natural frequency of the vibrating structures (ω). In this study we have proposed new equations and methods for the mentioned calculations which has been compared with software calculations. Many researchers have calculated the free vibration of structures using different methods. One formula to obtain the natural frequency of tube structures is obtained from the fourth-order differential equation (Wang, 1996). An approximate solution in order to analyze the free vibration of tall tube-in-tube buildings have been proposed by different researchers (Lee, 2007; Lee and Bang, 2008; Lee and Tovar, 2014). The modeling of tall building using a beam with varying stiffness and mass subject to the variable axial force caused by simple weight was presented by Mohammadnejad (2015). Free vibration analysis using differential equation has been evaluated by Bozdogan (2009) and Bozdogan (2013). The first natural frequency of tall buildings with a system combined of framed tube, shear core, and belt truss has been calculated under axial force (Kamgar and Rahgozar, 2014; 2015; 2018). A new and simple method of determining the natural frequency of tube structures with tube-in-tube wall has been presented. The novelty of this method refers to the mathematical computation process which is much simpler and shorter. The effect of structure’s weight on the natural frequency of structure has been considered by variable axial force. Tall building is modeled by a beam with variable stiffness and mass along the height of the building. Therefore, the partial differential equation with variable coefficients is used which have been presented by Mohammadnejad and Haji-Kazemi (2018). Furthermore, there is no regular research on the vibrational frequency calculation of pyramidal tube systems, especially by mathematical methods, or a small number of studies have been done most of which have been done on 90-degree structures with tube systems.

کلیدواژه‌ها [English]

  • Natural frequency
  • Variable flexural stiffness
  • Pyramid tube building
  • Pyramidal beam
Alavi A, Rahgozar P, Rahgozar R, “Minimum‐weight design of high‐rise structures subjected to flexural vibration at a desired natural frequency”, The Structural Design of Tall and Special Buildings, 2018, 27 (15), p.e1515. DOI.org/10.1002/tal.1515.
Ali M, Moon K, “Structural development tall buildings: current trends and future prospects”, Architecture Science Review, 2007, 50 (3), 205-223. DOI. org/10.3763/asre.2007.5027.
Bozdogan KB, “An approximate method for static and dynamic analysis of symmetric wall-frame buildings”, The Structural Design of Tall and Special Buildings, 2009, 18 (3), 279-290. DOI. org/10.1002/tal.409.
Bozdogan KB, “Free vibration analysis of asymmetric shear wall-frame buildings using modified finite element transfer matrix method”, Structural Engineering and Mechanics, 2013, 46 (1), 1-17. DOI.org/10.12989/sem.2013.46.1.001.
Davari SM, Malekinejad M, Rahgozar R, “Static analysis of tall buildings based on Timoshenko beam theory”, International Journal of Advanced Structural Engineering, 2019, 11 (4), 455-461. DOI.org/10.1007/s40091-019-00245-7.
Fekrazadeh S, Khaji N, “An analytical method for crack detection of Timoshenko beams with multiple open cracks using a test mass”, European Journal of Environmental and Civil Engineering, 2017, 21 (1), 24-41. DOI.org/10.1080/19648189.2015.1090929.
Huang Y, Li XF, “A new approach for free vibration of axially functionally graded beams with non-uniform cross-section”, Journal of Sound Vibration, 2010, 329 (11), 2291-2303. DOI.org/10.1016/j.jsv.2009.12.029.
Jahanshahia MR, Rahgozar R, “Free vibration analysis of combined system with variable cross section in tall buildings”, Structural Engineering and Mechanics, 2012, 42 (5), 715-728. DOI.org/10.12989/sem.2012.42.5.715.
Kamgar R, Rahgozar R, Tavakoli R, “Seismic performance of outrigger-braced system based on finite element and component-mode synthesis methods”, Iranian Journal of Science and Technology, Transactions of Civil Engineering, 2020, 44 (4), 1125-1133. DOI.org/10.1007/s40996-019-00299-3.
Kamgar R, Rahgozar R, “Determination of optimum location for flexible outrigger systems in non-uniform tall buildings using energy method”, International Journal of Optimization Civil Engineering, 2015, 5 (4), 433-444. http://ijoce.iust.ac.ir/article-1-226-en.html.
Kamgar R, Rahgozar R, Tavakoli R, “The best location of belt truss system in tall buildings using multiple criteria subjected to blast loading”, Civil Engineering Journal, 2018, 4 (6), 1338-1353. DOI.org/10.28991/cej-0309177.
Kamgar R, Rahgozar P, “Reducing static roof displacement and axial forces of columns in tall buildings based on obtaining the best locations for multi-rigid belt truss outrigger systems”, Asian Journal of Civil Engineering, 2019, 20 (6), 759-768. DOI.org/10.1007/s42107-019-00142-0.
Kamgar R, Rahgozar R, Tavakoli R, “Seismic performance of outrigger-braced system based on finite element and component-mode synthesis methods”, Iranian Journal of Science and Technology, Transactions of Civil Engineering, 2019, 1 (1), 1-9. DOI.org/10.1007/s40996-019-00299-3.
Khan FR, Amin NR, “Analysis and Design of Fame Tube Structures for Tall Concrete Buildings”, Structural Engineering, 1973, 51 (3), 85-92.
Khan FR, “Tubular Structures for Tall Buildings, Handbook of Concrete Engineering”, Van Nostrand Reinhold, 1985, NY, 399-410. DOI.org/10.1007/978-1-4757-0857-8_11.
Kuang JS, Ng SC, “Coupled vibration of tall buildings structures”, The Structural Design of Tall and Special Buildings, 2004, 13, 291-303. DOI.org/10.1002/tal.253.
Kwan AKH, “Simple method for approximate analysis of framed tube structures”, Journal of Structure Engineering ASCE, 1994, 120 (4), 1221-1239. DOI.org/10.1061/(ASCE)0733-9445(1994)120:4(1221).
Lee WH, “Free Vibration Analysis for Tube-in Tube Tall Buildings”, Journal of Sound and Vibration, 2007, 303, 287-304. DOI.org/10.1016/j.jsv.2007.01.023.
Lee S, Tovar A, “Outrigger placement in tall buildings using topology optimization”, Journal of Engineering Structures, 2014, 74, 122-129. DOI.org/10.1016/j.engstruct.2014.05.019.
Malekinejad, M, Rahgozar R, “A simple analytic method for computing the natural frequencies and mode shapes of tall buildings”, Journal of Applied Mathematical Modelling, 2012, 36, 3419-3432. DOI.org/10.1016/j.apm.2011.10.018
Malekinejad M, Rahgozar R, “An analytical model for dynamic response analysis of tubular tall buildings”, The Structural Design of Tall and Special Buildings, 2014, 23, 67-80.
DOI.org/10.1002/tal.1039.
Mohammadnejad M, Safari H, Bagheripour MH, “An analytical approach to vibration analysis of beams with variable properties”, Arabian Journal for Science and Engineering, 2014, 39, 2561-2572. DOI.org/10.1007/s13369-013-0898-1.
Mohammadnejad M, “A new analytical approach for determination of flexural, axial and torsional natural frequencies of beams”, Structural Engineering and Mechanics an International Journal, 2015, 55, 655-674. DOI.org/10.12989/sem.2015.55.3.655.
Mohammadnejad M, Kazemi HHA, “New and simple analytical approach to determining the natural frequencies of framed tube structures”, Structural Engineering and Mechanics, 2018, 65 (1), 111-120. DOI.org/10.12989/sem.2018.65.1.000
Mohammadnejad M, Haji Kazemi H, “A new and simple analytical approach to determining the natural frequencies of framed tube structures. Structural Engineering and Mechanics, 2018, 65 (1), 111-120. DOI.org/10.12989/sem.2018.65.1.111
Park YK, Kim HS, Lee DG, “Efficient structural analysis of wall-frame structures”, The Structural Design of Tall and Special Buildings, 2014, 23, 740-59. DOI.org/10.1002/tal.1078
Rahgozar R, “Determination of optimum location for flexible outrigger systems in tall buildings with constant cross section consisting of framed tube, shear core, belt truss and outrigger system using energy method”, International Journal of Steel Structural, 2017, 17 (1), 1-8. DOI.org/10.1007/s13296-014-0172-8.
Ramezani M, Mohammadizadeh MR, Shojaee S, “A new approach for free vibration analysis of no uniform tall building structures with axial force effects”, The Structural Design of Tall and Special Buildings, 2019, 28 (5), e1591. DOI.org/10.1002/tal.1591.
Safafri H, Mohammadnejad M, Bagheripour MH, “Free vibration analysis of no prismatic beams under variable axial forces”, Structural Engineering and Mechanics an International Journal, 2012, 43 (5), 561-582. DOI.org/10.12989/sem.2012.43.5.561.
Wang Q, “Sturm-Liouville Equation for Free Vibration of a Tube-in-Tube Tall Building”, Journal of Sound and Vibration, 1996, 191 (9), 349-355.
DOI.org/10.1006/jsvi.1996.0126.
Schueller W, “High Rise Building Structures”, John Wiley & Sons, New York, The United States, 1977.
Scott D, Hamilton N, Ko E, “Structural Design Challenges for tall buildings”, Structure Magazine, 2005, 2, 20-23.
Xiong C, Niu Y, Wang Z, Yuan L, “Dynamic monitoring of a super high-rise structure based on GNSS-RTK technique combining CEEMDAN and wavelet threshold analysis”, European Journal of Environmental and Civil Engineering, 2019, DOI.org/10.1080/19648189.2019.1608471.