بررسی تأثیر میکروسیلیس بر تغییرات مقاومت، حدود اتربرگ و نفوذپذیری در خاک رس تثبیت‌شده با سیمان

نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 دانشکده فنی، دانشگاه آزاد اسلامی، واحد ایلام

2 دانشکده مهندسی عمران، دانشگاه تبریز

چکیده

خاک‌های ریزدانه معمولاً دارای مقاومت و ظرفیت باربری کم و مشکلات تورمی هستند. یکی از راه‌های مقابله با مشکلات این نوع خاک‌ها، تثبیت خاک ریزدانه است. تثبیت خاک شامل فعالیت‌هایی است که درنتیجه آن‌ها مشخصات مهندسی خاک بهبودیافته و به ویژگی‌های موردنظر نزدیک می‌شود. این اقدامات باعث افزایش مقاومت، کاهش تورم، کاهش نفوذپذیری، افزایش کارایی و اثرات بسیار سودمند دیگر می‌شود. در این خصوص سیمان یکی از تثبیت‌کننده‌های مهم خاک رس می‌باشـد. هدف این تحقیق، پژوهش در مورد روند اثر ماده پوزلانی میکروسیلیس بر مقاومت تک­ محوری و حدود اتربرگ و نفوذپذیری خاک تثبیت‌شده با سیمان می‌باشد. برای رسیدن به این هدف 38 نمونه با 10 طرح اختلاط مختلف ساخته شده و بر روی آنها آزمایشات آزمایشگاهی ازجمله تعیین مقاومت تک­ محوری، حدود اتربرگ و نفوذپذیری انجام شده است. نتایج به‌دست‌آمده نشان می‌دهد که افزودن میکروسیلیس به خاک رس تثبیت‌شده با سیمان مقاومت تک­ محوری 7 و 28 روزه خاک را به­ صورت خطی افزایش می‌دهد. در مورد جایگزینی سیمان با میکروسیلیس نتایج نشان می‌دهد که مقاومت با بیشتر شدن مقدار میکروسیلیس و کاهش سیمان، کاهش می‌یابد به جز در طرح اختلاط مربوط به 3% سیمان با 2% میکروسیلیس که در آن مقاومت افزایش می‌یابد. همچنین، افزودن میکروسیلیس باعث افزایش خطی نشانه خمیری و کاهش نفوذپذیری به­ صورت خطی می‌گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of the Effect of Microsilica on the Variations of Strength, Atterberg Limits and Permeability in Cement-Stabilized Clay

نویسندگان [English]

  • Sajad Tavakoli 1
  • Mohammad Hosein Aminfar 2
  • Ahmad Hashemzadeh 2
1 Faculty of Civil Engineering, Ilam Azad University, Ilam, Iran
2 Faculty of Civil Engineering, University of Tabriz, Tabriz, Iran
چکیده [English]

Introduction
Soil stabilization is one of the important issues related to the improvement of poor soils in geotechnical engineering. Today, due to high costs and technical and safety problems in implementation, the use of environmentally friendly and appropriate materials to reduce costs and increase efficiency and safety, is one of the basic needs. In this regard, the use of pozzolans can meet the above expectations. Cement soil stabilization is one of the most common methods of soil improvement, which is presented as an effective method for improving loose soils, especially road construction projects, as well as a suitable solution to improve the physical and engineering properties of soil and reduce costs.
Since the presence of soft clays can cause high deformation, low resistance and severe scouring ability, therefore, the presence of this type of soil can damage or destroy a structure (Cong et al. 2014, Do et al. 2016), based on this, various methods such as replacement with suitable materials, various improvement methods to deal with the problems caused by the existence of this type of soil have been presented. Chemical modification using conventional additives such as lime and cement is one of the common solutions for the stabilization of such soils (Ahmed, 2015). In general, the process of soil improvement after interaction with the additive depends on the characteristics of the components and environmental conditions.

کلیدواژه‌ها [English]

  • Clay
  • Soil stabilization
  • Cement
  • Microsilica
  • Atterberg limits
Abdi MR, Wild S “Sulphate Expansion of Lime-Kaolinite: I. Physical Characteristics, Clay Minerals, 1993, 28, (4), 555-567.
Ahmed A, “Compressive strength and microstructure of soft clay soil stabilized with recycled bassanite”, Applied Clay Science, 2015, 104, 27-35.
Ahmed A, Issa UH, “Stability of soft clay soil stabilised with recycled gypsum in a wet environment”, Soils and Foundations, 2014, 54, 405-416.
Al-Mukhtar M, Khattab S, Alcover JF, “Microstructure and geotechnical properties of lime-treated expansive clayey soil”, Engineering Geology, 2012, 139, 17-27.
Al-Mukhtar M, Lasledj A, Alcover JF, “Behaviour and mineralogy changes in lime-treated expansive soil at 50 C”, Applied Clay Science, 2010, 50, 199-203.
ASTM, “Annual book of astm standard. American Society for Testing and Materials”, Philadelphia, 2006, 4, 08.
Roohbakhshan A, Kalantari B, “Stabilization of clayey soil with lime and waste stone powder”, Amirkabir Journal of Civil Engineering, 2016, 48 (4), 429-438.
Sunil BM, Nayak S, Shrihari S, “Effect of pH on the geotechnical properties of laterite”, Engineering Geology, 2006,  85 (1), 197-203.
Broms BB, Boman P, “Stabilization of Soil with Lime Columns”, Ground Engineering.
Cong M, Longzhu C, Bing C, “Analysis of strength development in soft clay stabilized with cement-based stabilizer”, Construction and Building Materials, 2014, 71, 354-362.
Do TN, Ou CY, Chen RP, “A study of failure mechanisms of deep excavations in soft clay using the finite element method”, Computers and Geotechnics, 2016, 73, 153-163.
Bell FG, “Lime stabilization of clay minerals and soils”, Engineering Geology, 1996, 42 (4), 223-237.
Sariosseiri F, Muhunthan B, “Effect of cement treatment on geotechnical properties of some Washington State soils”, Engineering Geology, 2009, 104 (1), 119-125.
Goodarzi AR, Salimi M, “Stabilization treatment of a dispersive clayey soil using granulated blast furnace slag and basic oxygen furnace slag”, Applied Clay Science, 2015, 108, 61-69.
Jafari M, Esna-ashari M, “Effect of waste tire cord reinforcement on unconfined compressive strength of lime stabilized clayey soil under freeze-thaw condition”, Cold Regions Science and Technology, 2012, 82, 21-29.
Khattab SAA, Al-Mukhtar M, Fleureau JM, “Long-Term Stability Characteristics of a Lime-Treated Plastic Soil”, Journal of Materials in Civil Engineering, ASCE, 2007, 19 (4), 358-366.
Lam LG, Bergado DT, Hino T, “PVD improvement of soft Bangkok clay with and without vacuum preloading using analytical and numerical analyses”, Geotextiles and Geomembranes, 2015, 43, 547-557.
Liu Z, Qian G, Zhou J, Li C, Xu Y, Qin Z, “mprovement of Ground Granulated Blast-Furnace Slag on Stabilization/Solidification of Simulated Mercury-Doped Wastes in Chemically Bonded Phosphate Ceramics”, Journal of Hazardous Materials, 157, 1, 146-153.
Ouhadi VR, Yong RN, “Ettringite Formation and Behavior in Clayey Soils”, Applied Clay Science, 2008, 42 (1-2), 258-265.
Sheng X, Xin H, “Effect of Process of Ettringite Formation on Strength Properties in Stabilized Soil”, 2nd International Conference on Problematic Soils, 2006, 359-401.
Zhang T, Cai G, Liu S, Puppala AJ, “Engineering properties and microstructural characteristics of foundation silt stabilized by lignin-based industrial by-product”, KSCE Journal of Civil Engineering, 2016, 20 (7), 2725-2736.
Yi Y, Gu L, Liu S, “Microstructural and mechanical properties of marine soft clay stabilized by lime-activated ground granulated blastfurnace slag”, Applied Clay Science, 2015, 103, 71-76.