بررسی اقتصادی، زیست محیطی و دوام بتن سبک الیافی سازه ای

نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 دانشکده عمران- معماری و هنر، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران

2 دانشکده معماری و شهرسازی، دانشگاه هنر، تهران

چکیده

یکی از چالش­ های صنعت ساخت­ وساز احداث سازه ­های زیست­ محیطی و اقتصادی است که علاوه بر تأمین مشخصات طراحی و سازه ­ای، از دوام و پایداری مطلوبی برخوردار باشد. از ای ن­رو این صنعت نیاز به در نظرگرفتن یک ارزیابی پایداری و انتخاب مصالح پایدارتر در جنبه­ های مهندسی، زیست­ محیطی و اقتصادی خواهد داشت که این مهم، یکی از کلیدهای دستیابی به توسعه پایدار ساخت خواهد بود. هدف از انجام این پژوهش، بررسی اقتصادی، زیست­ محیطی و دوام بتن سبک و سبک الیافی و مقایسه آن با بتن معمولی می­ باشد. در این راه به­ منظور بررسی دوام، پنج طرح اختلاط شامل بتن معمولی، بتن سبک ساخته شده با سبک­دانه­ های رس منبسط شده و بتن سبک مسلح شده با الیاف­ های فولاد، شیشه و پلی­ پروپیلن با درصد حجمی یک درصد الیاف ساخته شد و سپس آزمایشات مقاومت فشاری، مقاومت کششی، مقاومت الکتریکی چهار نقطه ­ای، نفوذ تسریع شده یون کلراید، تراوایی (عمق نفوذ آب در بتن) و جذب آب بتن سخت شده انجام گردید. در مرحله دوم برای بررسی زیست ­محیطی از استاندارد ایزو ۱۴۰۴۰ استفاده شد و این بتن­ ها از منظر سلامت انسانی، کیفیت اکوسیستم، تغییرات اقلیمی و منابع مورد بررسی قرار گرفتند. در بخش سوم و در حوزه اقتصادی با مدل­ سازی یک سازه پنج طبقه بتنی با بتن سبک و مقایسه آن با بتن معمولی، تغییرات احجام فولاد مصرفی ناشی از استفاده از بتن سبک به­ دست آمد. نتایج حاصل از این پژوهش نشان می ­دهد بتن ­های سبک ساخته­ شده با رس منبسط شده از دوام نسبتاً کم­تری نسبت به بتن معمولی برخوردار می­ باشند، در حوزه زیست­ محیطی آسیب‌های بیشتری برای محیط زیست دارند و در حوزه اقتصادی، با کاهش در فولاد مصرفی نسبت به بتن معمولی همراه هستند.

کلیدواژه‌ها


عنوان مقاله [English]

An Investigation into the Economical, Environmental and Durability of Structural Fiber Lightweight Concrete

نویسندگان [English]

  • Seyed Mehdi Rangraz 1
  • Behnod Barmayehvar 2
  • Majid Safehian 1
1 Department of Civil Engineering Architecture and Art, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 Department of Architecture and Urban Planning, University of Art, Tehran, Iran
چکیده [English]

    
     In order to reduce dead loads of structures in earthquake prone areas such as Iran, lightweight concretes have several advantages which could be used as a substitution of ordinary concretes. One of the challenges in construction industry is producing an economical and environmental structures which could be able to fulfil requirements of structural and durability properties both. Thus, this industry needs a sustainability evaluation to find sustainable materials in engineering, environmental and economical aspects which this is one of the keys to achieving sustainable development. The main purpose of this research is to investigate economical, environmental and durability properties of lightweight concretes and fiber reinforced lightweight concretes and compare them with ordinary concretes.

کلیدواژه‌ها [English]

  • Reinforced Lightweight Concrete
  • Sustainable Development
  • Durability Of Concrete
  • Environment
محمودزاده ­کنی ا، لاهورپور س، گودینی ج، "ارزیابی پایداری زیست­ محیطی در ساخت صنعتی (نمونه موردی: روش اجرایی بتن پیش ساخته)"، نشریه مهندسی عمران، دانشگاه صنعتی امیرکبیر، 1396، 49 (3)، 565-576.
خاموشی س، دهقانی ا، "ارزیابی اقتصادی طراحی قاب خمشی بتنی با استفاده از بتن سبک سازهای"، دهمین کنگره بین ­المللی مهندسی عمران، دانشکده مهندسی عمران، دانشگاه تبریز، 1394.
شریعتمداری د، بنیانی م، "اهداف توسعه پایدار در ساخت­وساز"، ششمین همایش مقررات ملّی ساختمان، شیراز، 1393.
اصفهانی م ر، بقیعی ن، موسوی­ مقدم ا، "اثر دانه­ بندی سبک­دانه پومیس فاروج و افزودنی­ ها روی دوام بتن سبک­دانه در برابر یخ­زدگی"، نهمین کنگره ملّی مهندسی عمران، 1395.
حسنی م م، مقدس ­نژاد ف، سبحانی ج، چینی م، "بررسی دوام روکش بتن الیافی با الیاف پلی ­پروپیلن اصلاح شده"، سومین کنفرانس ملّی رویه­ های بتنی، 1398.
AASHTO, T358: Standard Method for Test for Surface Resistivity Indication of Concretes Ability to Resist Chloride Ion Penetration, 2011.
ACI 201. 2R-01, Guide to Durable Concrete, American Concrete Institute, 2001.
ASTM C1202, Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration, 2012.
ASTM C496/C496M: Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, 2011.
Bogas JA, Gomes A, “Non-steady-state accelerated chloride penetration resistance of structural lightweight aggregate concrete”, Cem. Concr, Compos, 2015.
BS EN 1881-122, Testing concrete. Method for determination of water absorption, 2011.
BS EN 12390-8, Depth of penetration of water under pressure, 2009.
BS EN 12390-3: Testing hardened concrete-Part3: Compressive strength of test specimens, 2009.
Ecoinvent3, database, “http://www.ecoinvent.org /database/ecoinventversin-3/system-models/allocation-cut-off-byclassification/”, 2014.
Gao Y, Zou C, “Experimental study on segregation resistance of nanoSiO2 fly ash lightweight aggregate concrete”, Construction and Building Materterials, 2015.
Grabois TM, Cordeiro G C, Toledo Filho R D, “Fresh and hardened-state properties of self-compacting lightweight concrete reinforced with steel fibers”, Construction and Building Materials, 2016.
ISO 14040 International Standard.In: Environmental management-life cycle assessment-principles and framework. Geneva, Switzerland: International Organisation for Standardization, 2006.
ISO15673, “Guidelines for the simplified design of structural reinforced concrete for buildings”, The International Organization for Standardization, Switzerland, 2005.
Hung Mo K, Heng Go S, “Mechanical, toughness, bond and durability-related properties of lightweight concrete reinforced with steel fibres”, Materials and Structures, 2017.
Kurda R, Silvestre JD, Brito J de, “Toxicity and environmental and economic performance of fly ash and recycled concrete aggregates use in concrete: A revie”, Heliyon, 2018.
Li H, Deng Q, Zhang J, Xia BO, Skitmore M, “Assessing the life cycle CO2 emissions of reinforced concrete structures: Four cases from China”, Cleaner Production, 2019.
Libre NA, Shekarchi M, Mahoutian M, Soroushian P, “Mechanical properties of hybrid fiber reinforced lightweight aggregate concrete made with natural pumice”, Construction and Building Materials, 2011.
Life Cycle Assessment Research Group- ZHAW “IMPACT 2002+: A New Life Cycle Impact Assessment Methodology, Industrial Ecology & Life Cycle Systems Group, GECOS”, Swiss Federal Institute of Technology Lausanne (EPFL), CHLausanne, Switzerland, 2001.H.
Robati M, McCarthy TJ, Kologiannakis G, “Incorporating environmental evaluation and thermal properties of concrete mix designs” Construction and Building Materials, 2016.
Torgal FP, Jalali S, “Eco-Efficient Construction and Building Materials, 2011.
U.S.G. Survey, Mineral Commodity Summaries, U.S. Geological Survey, Washington, 2015.