تحلیل شدت تصادفات برون‌شهری با استفاده از داده‌کاوی مکانمند مطالعه موردی: محور قدیم قزوین- لوشان

نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 گروه مهندسی عمران- راه و ترابری، دانشکده فنی، دانشگاه گیلان

2 گروه راه و ترابری، دانشکده مهندسی عمران، دانشگاه علم‌ و ‌صنعت ایران

3 گروه مهندسی عمران (راه و ترابری)، دانشکده فنی، دانشگاه گیلان

چکیده

مدل­سازی شدت تصادفات به­ منظور شناسایی پارامترهای مؤثر بر آن در راه­ های برون­ شهری و همچنین تحلیل مکانی تصادفات رخ داده می­تواند موجبات کاهش تصادفات جاده­ای یک محور برون‌شهری را فراهم آورد. هدف این تحقیق ارائه مدلی مبتنی بر سیستم‌های اطلاعات مکانی (GIS) و داده­ کاوی به­ روش درخت طبقه ­بندی و رگرسیون جهت تحلیل شدت تصادفات و تعیین عوامل مؤثر بر آن در راه ­های اصلی دوخطه برون­ شهری است. روش پیشنهادی در محور قدیم قزوین- لوشان مورد ارزیابی و آزمون قرار می‌گیرد. در این راستا به منظور بررسی توزیع مکانی تصادفات در محور مورد مطالعه طی دوره 6 ساله 1390 تا 1395 شمسی، از توابع خودهمبستگی مکانی گتیس- ارد جی استار (Getis-Ord Gi) و تراکم کرنل استفاده شده است. خروجی تحلیل‌های مکانی نشان داد، که تمرکز تصادفات در بخش اعظمی از قوس­ های افقی محور مورد مطالعه بیشتر می­ باشد. باتوجه به این دستاورد در فاز بعدی تحقیق به­ منظور بررسی عوامل مؤثر بر شدت تصادفات، از مدل داده­ کاوی درخت طبقه­ بندی و رگرسیون بر روی تصادفات رخ­داده در کل محور و به طور خاص تصادفات رخ داده در قوس‌های افقی استفاده گردید. نتایج حاکی از آن بود که مهم‌ترین عوامل مؤثر بر افزایش شدت تصادفات در محور مورد مطالعه، دو متغیر نوع تصادفات و نحوه برخورد با ضرایب اهمیت متغیرهای مستقل به ­ترتیب 100 و 14/6 درصد برای کل محور و 100 و 22/8 درصد برای قوس ­های افقی هستند. بررسی اهمیت نسبی سایر متغیرهای مدل پیشنهادی نشان داد که نوع راه و توپوگرافی منطقه از جمله عوامل مؤثر در افزایش تصادفات با شدت خسارتی در محور قدیم قزوین- لوشان می ­باشد. علاوه بر این نتایج مدل­سازی بر روی تصادفات رخ ­داده در قوس­ های افقی نیز حاکی از این بود که مقاطع دارای خط-کشی ممتد، بیش از سایر مقاطع، مستعد وقوع تصادفات فوتی و جرحی شدید هستند. این تحقیق نشان داد که تلفیق توابع مکانمند GIS با تحلیل‌های ناپارامتریک داده‌کاوی که قابلیت مدل­سازی توأمان داده‌های کمی و کیفی را هم ­زمان دارا می‌باشد، در تعیین عوامل مؤثر بر افزایش شدت تصادفات و تصمیم‌گیری به‌منظور ارتقاء سطح ایمنی در محورهای برون‌شهری کارا و مؤثر است.

کلیدواژه‌ها


عنوان مقاله [English]

Modelling and Analyzing the Severity of two-lane Highway Crashes Using the Spatial Data mining, Case Study: Old Corridor of Qazvin-Loshan

نویسندگان [English]

  • Meysam Effati 1
  • Hamid Behbahani 2
  • Samane Mortezaei 2
  • Mahyar Vahedi Saheli 3
1 Department of Civil Engineering (Road and Transportation), Faculty of Engineering, University of Guilan, Iran
2 Department of Road and Transportation, Faculty of Civil Engineering, The University Of Elmo-Sanat, Tehran, Iran
3 Department of Civil Engineering (Road and Transportation), Faculty of Engineering, The University of Guilan, Gilan, Iran
چکیده [English]

Identifying the effective parameters on the increase of the accidents severity in the two-lane highway and also the spatial analysis of the accidents occurring in them, could lead to the reduction of the road accidents of this road. Based on this, the present research in addition to identifying section with high crashes, it also identifies the factors affecting the severity of accidents.

کلیدواژه‌ها [English]

  • Accidents severity
  • Data mining
  • Spatial analysis
  • Classification and regression tree
  • Horizontal curves
Abegaz T, Berhane Y, Worku A, Assrat A, Assefa A, “Effects of excessive speeding and falling asleep while driving on crash injury severity in Ethiopia: a generalized ordered logit model analysis”, Accident Analysis and Prevention, 2014, 71 (10), 15-21.
Agent K, Deen R, “Relationship between roadway geometrics and accidents”, In: Transportation Research Record: Journal of the Transportation Research Board, no. 541. TRB, National Research Council, Washington, DC, 1975, 1-11.
Al-Senan SH, Wright PH, “Prediction of head-on accident sites”, Transportation Research Record: Journal of the Transportation Research Board, TRB, National Research Council, Washington, DC, No. 11221987, 79-85.
Allwein E, Schapire R, Singer Y, “Reducing multiclass to binary: a unifying approach for margin classifiers”, The Journal of Machine Learning Research, 2000, 1, 113-141.
Bissell HH, Pilkington GB, Mason JM, Woods DL, “Roadway cross section and alignment”, in Synthesis of Safety Research Related to Traffic Control and Roadway Elements volume 1, US Department of Transportation, Federal Highway Administration, Washington, DC, 1, 1982, 1 (1), 1-16.
Breiman L, Friedman J, Olshen RA, Stone CJ, “Classification and Regression Trees”, CRC press, 1981.
Chang LY, Wang HW, “Analysis of traffic injury severity: an application of nonparametric classification tree techniques”, Accident Analysis & Prevention, 2006, 38 (5), 1019-1027.
Chen C, Zhang G, Tarefder R, Ma J, Wei H, “A Multinomial Logit Model-Bayesian Network Hybrid Approach for Driver Injury Severity Analyses in Rear-end Crashes”, Accident Analysis and Pervination, 2015, 80, 76-88.
Choi J, Kim S, Heo TY, Lee J, “Safety effect of highways terrain types in vehicles crashes models of major rural roads”, KSCE Journal Of Civil Engineering, 2011, 15 (2), 405-412.
Cover, Thomas, and Peter Hart, “Nearest neighbor pattern classification”, IEEE transactions on information theory, 1967, 13 (1), 21-27.
Delen D, Sharda R, Bessonov M, “Identifying significant predictors of injury severity in traffic accidents using a series of artificial neural networks”, Accident Analysis and Prevention, 2006, 38 (3), 434-444.
Dissanayake S, Lu J, “Factors influential in making an injury severity difference to older drivers involved in fixed object-passenger car crashes”, Accident analysis and prevention,2002, 34 (5), 609-618.
Effati M, “Determining Roads Black Spots using Spatial Information Systems and Multicriteria Decision Making Processes”, Transportation engineering, 2012, 4, 349-363.
Effati M, Rajabi M, Sh Shabani, “Developing a knowledge-driven geospatial information system for regional transportation corridors accidents prediction”, Transportation engineering, 2012, 345-359.
Effati M, Sadeghi A, “A sementic-based classification tree approaches for modelling complex spatial rules in motor vehicle crashes domain”, Wires Data Mining & Knowledge Discovery, 2015, 5, 181-194.
Effati M, Jean-Claude T, Sh Shabani, “Geospatial and machine learning techniques for wicked social science problems: analysis of crash severity on a regional highway corridor”, Journal of Geographical Systems, 2015, 17 (2), 107-135.
Effati, M, Vahedi Saheli M, “Examining the influence of rural land uses and accessibility-related factors to estimate pedestrian safety: The use of GIS and machine learning techniques”, International Journal of Transportation Science and Technology, 2021.
Erdogan S, Yilmaz I, Baybura T, “Geographical information systems aided traffic accident analysis system case study: city of Afyonkarahisar”, Accident Analysis and Prevention, 2008, 40 (1), 174-18.
Fotheringham A, Brubsdon C, Charlton ME, Quantitative Geography: Perspectives on Spatial Data Analysis London, U.K.: Sage Publication, 2000.
Garder P, “Segment characteristics and severity of head-on crashes on two-lane rural rural highways in maine”, Accident Analysis and Prevention, 2006, 38, 652-661.
Gibreel GM, Easa SM, Hassan Y, El-Dimeery IA, “State of the art of highway geometric design consistency”, Journal of Transportation Engineering, 1999, 125 (4), 305-313.
Glennon JC, Neuman TR, Leisech JE, “Safety and operational considerations for design of Highway curves”, Tarnsportation Resaerch Record, FHWA/RD-86/035, 1985.
Gundogdu IB, “Applying linear analysis methods to GIS-supported procedures for preventing traffic accidents: Case study of Konya”, Safety Science, 2010, 48 (6), 763-769.
Huang H, Peng Y, Wang J, Luo Q, Li X, “Interactive risk analysis on crash injury severity at a mountainous freeway with tunnel groups in China”, Accident Analysis and Prevention, 2018, 111, 56-62.
Ikeda T, Mori N, “Analysis of correlation between roadway alignment and traffic accidents”, Proceedings of the Third International Symposium on Highway Geometric Design, Chicago, June 29-July 1, 2005.
Jung S, Qin X, Oh C, “Improving strategic policies for pedestrian safety enhancement using classification tree modeling”, Transportatin Research Part A: Policy and Practice, 2016, 85, 53-64.
Kashani AT, Mohaymany AS, “Analysis of the traffic injury severity on two lane, two-way rural roads based on classification tree models”, Safety Science, 2011, 49 (10), 1314-1320.
Khajahsalimi M, Khabiri MM, Fallah Nezhad MS, “Prediction and Investigation of Road Traffic Accident Severity Factors using Support Vector Machine Algorithm”, Journal of Civil and Environmental Engineering, 2019, 49 (3), 35-43.
Leisch JE, “Traffic Control and Roadway Elements-Their Relationship to Highway Safety-Revised”, Chapter 12: Alignment. Highway User Federation for Safety and Mobility, Washington, DC, 1971.
Ma Z, Chien IJ, Dong C, Hu D, Xu T, “Exploring factors affecting injury severity of crashes in freeway tunnels”, Tunnelling and Underground Space Technology, 2016, 59, 100-104.
Mergia WY, Eustace D, Chimba D, Qumsiyeh M, “Exploring factors contributing to injury severity at freeway merging and diverging locations in Ohio”, Accident Analysis and Prevention, 2013, 55 (3), 202-210.
Musavi SR, “The Effect of Climatic Elements in Safety of Transportation Network”, 2nd National Conference of Roadway, Railway and Airal Accidents, Zanjan, 10 November, 2010, (In persion).
Ord J, Keith, Getis A, “Local spatial autocorrelation statistics: distributional issues and an application”, Geographical analysis, 1995, 27 (4) 286-306.
R.M.T.O, I.R. of Iran Road Maintenance & Transportation Organization; Annual Report (in persion), 2008.
Roque C, Moura F, Cardoso JL, “Detecting unforgiving roadside contributors through the severity analysis of ran-off-road crashes”, Accident Analysis and Prevention, 2015, 80, 262-273.
Shawky AM, Kishta M, AL-Harthi HA, “Investigating Factors Affecting the Occurrence and Severity of Rear-End Crashes”, Transportation Resarch Procedia 2017, 25, 2098-2107.
Saffarzadeh M, Zamani A, Shabani SH, “Accident Prediction Model on Curves for Two-Lane Rural Road”, Jornal of Transportation Research, 2007, 4 (3), 213-221, (in Persian).
Schnell T, Zwahlen HT, “Driver preview distances at night based on driver eye scanning recordings as a function of pavement marking retroreflectivities”, Transportation Research Record 1692, National Research Council, Washington, D.C., 1997, 129-141.
Sohn SY, Lee SH, “Data fusion, ensemble and clustering to improve the classification accuracy for the severity of road traffic accidents in Korea”, Safety Science, 2003, 41 (1), 1-14.
Steenberghen T, Dufays T, Thomas I, Flahaut B, “Intraurban location and clustering of road accidents using GIS: a Belgian Case”, International Journal of Geographic Information Science, 2044, 18 (2), 169-181.
Stewart J, “Applications of classification and regression tree methods in roadway safety studies”, Transportation Research Record, Journal of Transportation Research Board, 1996, 15 (1), 1-5.
Tax D, Duin R, “Using two-class classifiers for multiclass classification”, 16th International Conference on Pattern Recognition, volume 3, Quebec, Canada, 14 August, 2002, 124-127.
Theofilatos A, Graham DJ, Yannis G, “Factors affecting accident severity inside and outside urban areas in Greece”, Traffic Injury Preventation, 2012, 13 (5), 458-467.
Theofilatos A, “Incorporating real-time traffic and weather data to explore road accident likelihood and severity in urban arterials”, Journal of Safety Research, 2017, 61, 9-21.
Vahedi Saheli M, Effati M, “Investigation of Factors Contributing to Pedestrian Crash Severity in Rural Roads”, Journal of Injury and Violence Research, 11.4 Suppl 2, 2019.
Vahedi Saheli M, Effati M, “Examining the impact of land-use related factors on rural traffic collisions”, Journal of Injury and Violence Research 11.4 Suppl 2 (2019).
Vahedi Saheli M, Effati M, “Segment-based count regression geospatial modeling of the effect of roadside land uses on pedestrian crash frequency in rural roads”, International Journal of Intelligent Transportation Systems Research, 2021, 1-19.
Walmsley D, Summersgill I, “The relationship between road layout and accidents on modern rural trunk roads”, report 334, Transport Research Laboratory Crowthorne House, Nine Mile Ride,Wokingham, Berkshire RG40 3GA, 1998.
Wang ZY, Chen HY, Lu JJ, “Exploring impacts of factors contributing to injury severity at freeway diverge areas”, Transportation Research Recorde, 2009, 2012 (1), 43-52.
Yannis G, Papadimitriou E, Dupont E, Martensen H, “Estimation of fatality and injury risk by means of in-depth fatal accident investigation data”, Traffic Injury Prevention, 2010, 11 (5), 492-502.
Yu R, Abdel-Aty M, “Analyzing crash injury severity for a mountainous freeway incorporating real-time traffic and weather data”, Safety Science, 2014a, 63 (4), 50-56.
Yu R, Abdel-Aty M, “Using hierarchical Bayesian binary probit models to analyze crash injury severity on high speed facilities with real-time Traffic data”, Accident Analysis and Prevention, 2014b, 62 (2), 61-167.
Zegeer C, Stewart R, Reinfurt D, Council F, Neuman T, Hamilton E, Miller T, Hunter W, “Cost effective geometric improvements for safety upgrading of horizontal curves”, Federal Highway Administration, Final Report No. FHWA-RD-90-021, 1991.
Zhang Y, Li Z, Liu P, Zha L, “Exploring contributing factors to crash injury severity at freeway diverge areas using ordered probit model”, Procedia Engineering, 2011, 21 (1), 178-185.