تولید شتاب‌نگاشت‌های برساخته برای زلزله‌های تاریخی جهت ارزیابی قابلیت کاربرد در شبیه‌سازی آثار و تدقیق طیف‌های طراحی با مطالعه موردی تبریز

نوع مقاله : یادداشت پژوهشی

نویسندگان

1 گروه عمران، دانشکده فنی و مهندسی، دانشگاه بناب

2 دانشجوی کارشناسی ارشد خاک و پی، دانشکدۀ مهندسی عمران، دانشگاه صنعتی سهند

3 گروه عمران، دانشکدۀ فنی و مهندسی، دانشگاه شهید مدنی آذربایجان

چکیده

استفاده از داده­های لرزه­ای یکی از نیازهای اساسی مهندسی زلزله سازه­ها می­باشد. کاربرد تاریخچه­های زمانی ثبت شده زلزله­های پیشین هر منطقه ارجح­تر است. در صورت عدم وجود، زلزله­های سایر مناطق و یا تاریخچه­های ساخته شده جایگزین می­گردند. نظر به ضرورت تطابق مشخصات زلزله­های سایر مناطق با خصوصیات لرزه­ای منطقه مورد نظر، زلزله­های ساخته شده مورد توجه قرار می­گیرند. در این میان نیز زلزله­های برساخته به علت عدم نیاز به طیفی از پیش تعیین شده نسبت به زلزله­های مصنوعی برتری می­یابند. از این رو، در این مقاله تولید کاربردی شتاب­نگاشت­های برساخته برای زلزله­های تاریخی جهت شبیه­سازی آثار آن­ها بررسی و تأثیر استفاده از این شتاب­نگاشت­ها در تدقیق طیف­های طراحی ارزیابی می­شود. به این منظور، اطلاعات زلزله­های رخ داده در ایران جمع­آوری، یکسان­سازی و کاتالوگ مربوط تهیه می­گردد. نقشه گسل­های ایران بر پایه مشخصات زلزله­های رخ داده ترسیم می­شود. شتاب­نگاشت­های برساخته برای زلزله­های تاریخی شهر تبریز به عنوان نمونه­ای بارز از شهری با خطر زلزله بسیار بالا بدون داده­های دستگاهی ثبت شده مهم تولید می­گردند و طیف­های طراحی بر اساس زلزله­های تاریخی برساخته به دست آمده و با طیف آئین­نامه مقایسه می­گردند. نتایج حاصل نشان می­دهند روش این پژوهش طبق راستی­آزمایی انجام یافته به کمک شتاب­نگاشت­های واقعی و شتاب­نگاشت­های برساخته سایر روش­ها دارای دقت لازم برای تولید کاربردی شتاب­نگاشت­های برساخته می­باشد. مقایسه طیف­های طراحی حاصل از شتاب­نگاشت­های برساخته با طیف­های آئین­نامه­ای نیز نشان می­دهد طیف­های طراحی دقیق­تر می­شوند، طوری که به عنوان مثال برای شهر تبریز مشکل دست پایین بودن طیف­های آیین­نامه­ای برای فواصل کم و محافظه­کارانه بودن آن­ها برای فواصل دورتر از گسل مرتفع می­گردد.

کلیدواژه‌ها


عنوان مقاله [English]

Generation of Synthetic Accelerograms for Historical Earthquakes to Evaluate the Possibility of Applications in Simulating their Effects and Increasing the Accuracy of Design Spectra with Case Study of Tabriz

نویسندگان [English]

  • Peyman Narjabadifam 1
  • Vahid Shahamat 2
  • Yousef Kargar 3
  • Pouya Zahedi 3
1 Structural Earthquake Engineering, Department of Civil Engineering, Faculty of Engineering, University of Bonab
2 Faculty of Civil Engineering, Sahand University of Technology, 51335-1996, Tabriz, Iran
3 Civil Engineering Department, Engineering Faculty, Azarbaijan Shahid Madani University
چکیده [English]

Time histories of strong ground motion records are of great importance in the field of structural earthquake engineering. They are used as input data in various studies aiming at earthquake protection of structures. Real, artificial, and synthetic seismograms are the three kinds of these input data. Real seismograms are those recorded during earthquake events, artificial seismograms are known as those numerically generate in such a way that their response spectrum corresponds to a target spectrum, and synthetic seismograms are those obtained based on geological considerations (Rezaeian and Kiureghian, 2010). The real seismograms are sometimes unavailable even in high seismicity regions, when strong earthquakes have not been recorded after major historical earthquakes. Such a lack can be overcome through the application of modified real ground motions from other regions, which is a controversial method and may result in unrealistic evaluations (Shahjouei and Pezeshk, 2015). Historical earthquakes should then be synthesized. This is the objective of research being presented.

کلیدواژه‌ها [English]

  • Synthetic accelerogram
  • Historical earthquake
  • Earthquake catalog
  • Iranian faults
  • Earthquake simulation
  • Design spectrum
رده ا، "تاریخ زمین­لرزه­های ایران"، ترجمه، انتشارات آگاه، تهران، 1370.
شیخ­الاسلامی م ر، جوادی ح ر، اسدی سرشار م، آقاحسینی ا، کوه­پیما م، وحدتی دانشمند ب، "دانشنامه گسله­های ایران"، برای سازمان زمین­شناسی و اکتشافات معدنی کشور، انتشارات رهی، تهران، 1392.
عشایری ا، نیکبختان م، "ارائه روابطی برای تولید شتاب­نگاشت مصنوعی در فلات ایران با رویکرد تصادفی"، فصلنامه­ی علمی- پژوهشی علوم و مهندسی زلزله، 1394، 2 (4)، 11-27.
کمیته دائمی بازنگری آئین­نامه طراحی ساختمان­ها در برابر زلزله، مرکز تحقیقات راه، مسکن و شهرسازی، "آئین­نامه طراحی ساختمان­ها در برابر زلزله، استاندارد 2800 (ویرایش 4)"، تهران، 1393.
مقدسی موسوی س ع، حمزه­لو ح، شکیب ح، "شبیه­سازی زلزله سال 1381 آوج با روش تابع نیمه تجربی گرین"، مجله مهندسی عمران دانشگاه صنعتی امیرکبیر، 1388، 41 (2)، 35-42.
میرزایی ن، "پارامتـرهای مبنایی زمین­لرزه­های ایران"، تحت حمایت مؤسسه ژئوفیزیک دانشگاه تهران و جمعیت هلال احمر ایران، انتشارات دانش نگار، تهران، 1381.
Agrawal SK, “Generation of Synthetic Earthquake Accelerograms Using Engineering Earthquake Source Model", International Journal of structural Stability and Dynamics, 2004, 4 (4), 497-514.
Albini P, Musson-RM W, Gomez Capera AA, Locati M, Rovida A, Stucchi M, Vigano D, “Global Historical Earthquake Archive and Catalogue (1000-1903)”, GEM Technical Report 2013-01V1.0.0, 202 p.; Global Earthquake Model (GEM), Pavia, Italy, 2013.
Ambrasays NN, Melville CP, “A History of Persian Earthquakes", Cambridge University Press, Cambridge, UK, 1982.
Andrews DJ, “A Suggestion for Fitting Ground-Motion Attenuation Near an Extended Earthquake Source”, Seismological Research Letters, 2001, 72 (4),454-461.
BHRC (Road, House, and Urban Development Research Center), “Strong Motion Network”, http://www.bhrc.ac.ir/enismn/tabid/1097/Default.aspx, 14 July, 2016.
BHRC (Road, House, and Urban Development Research Center), “Strong Motion Network”, http://smd.bhrc.ac.ir/Portal/fa/Records/DrawGraphV1/8156, 21 May, 2017.
Boore DM, Bommer JJ, “Processing of Strong-Motion Accelerograms: Needs, Options, and Consequences”, Soil Dynamics and Earthquake Engineering, 2005, 25 (2), 93-115.
Chopra AK, “Dynamics of Structures: Theory and Applications to Earthquake Engineering”, Prentice Hall, New York, US, 2012.
Chopra AK, “Elastic Response Spectrum: A Historical Note”, Earthquake Engineering and Structural Dynamics, 2007, 36 (1), 3-12.
Ghodrati Amiri G, Iraji K, Namiranian P, “Generation of Multiple Spectrum-Compatible Artificial Earthquake Accelerograms with Hartley Transform and RBF Nerual Network”, Asian Journal of Civil Engineering (BHRC), 2014, 15 (4), 587-604.
Halldorsson B, Papageorgiou AS, “Calibration of the Specific Barrier Model to Earthquakes of Different Tectonic Regions”, Bulletin of the Seismological Society of America, 2005, 95 (4), 1276-1300.
Honore L, Courboulex F, Souriau A, “Ground Motion Simulations of a Major Historical Earthquake (1660) in the French Pyrenees Using Recent Moderate Size Earthquakes”, Geophysical Journal International, 2011, 187 (2), 1001-1018.
Hoseini Vaez SR, Sharbatdar MK, Ghodrati Amiri G, Naderpour H, Kheyroddin A, “Dominant Pulse Simulation of Near Fault Ground Motions”, Earthquake Engineering and Engineering Vibration, 2013, 12 (2), 267-278.
Hwang H, Pezeshk S, Lin YW, He J, Chiu JM, “Generation of Synthetic Ground Motion”, Technical Report, MAEC RR-2 Project, Sponsored by Mid-America Earthquake Center, Center for Earthquake Research and Information and Department of Civil Engineering, University of Memphis, US, February, 2001.
IRSC (Iranian Seismological Center at Institute of Geophysics), University of Tehran, “Bulletin Search”, http://irsc.ut.ac.ir/istn.php, 14 July, 2016.
Karimiparidari S, Zare M, Memarian H, Kijko A, “Iranian Earthquakes, A Uniform Catalog with Moment Magnitudes”, Journal of Seismology, 2013, 17 (3), 897-911.
Lam N, Wilson J, Hutchinson G, “Generation of Synthetic Earthquake Accelerograms Using Seismological Modeling: A Review”, Journal of Earthquake Engineering, 2000, 4 (3), 321-354.
Mentrasti L, “Estimate of Spectral and Pseudo-Spectral Acceleration Proximity", Engineering Structures, 2008, 30 (9), 2338-2346.
Mimoglou P, Psycharis IN, Taflampas IM, “Determination of the Parameters of the Directivity Pulse Embedded in Near-Fault Ground Motions and Its Effect on Structural Response”, In: Papadrakakis M, Plevris V, Lagaros N (eds) Computational Methods in Earthquake Engineering, Computational Methods in Applied Sciences, Vol 44, Springer, Cham, 2017.
Mousavi-Bafrouei SH, Mirzaei N, Shabani E, “A Declustered Earthquake Catalog for the Iranian Plateau”, Bulletin of Earthquake Engineering, 2014, 57 (6), 1-25.
Nicknam A, Abbasnia R, Bozorgnasab M, Eslamian Y, “Synthesizing Strong Motion Using Empirical Green’s Function and Genetic Algorithm Approach”, Journal of Earthquake Engineering, 2010, 14 (4), 512-526.
Papageorgiou AS, “The Barrier Model and Strong Ground Motion”, Pure and Applied Geophysics, 2003, 160 (3-4), 603-634.
Papageorgiou AS, Aki K, “A Specific Barrier Model for the Quantitative Description of Inhomogeneous Faulting and the Prediction of Strong Ground Motion, Part I: Description of the Model”, Bulletin of Seismological Society of America, 1983a, 73 (3), 693-722.
Papageorgiou AS, Aki K, “A Specific Barrier Model for the Quantitative Description of Inhomogeneous Faulting and the Prediction of Strong Ground Motion, Part II: Application of the Model”, Bulletin of Seismological Society of America, 1983b, 73 (4), 953-978.
PEER (The Pacific Earthquake Engineering Research Center), “PEER Ground Motion Database Beta (Software/Apps)”, http://ngawest2.berkeley.edu/spectras/14924/searches/13674/edit, 3 April, 2017.
Rezaeian S, Kiureghian AD, “Simulation of Synthetic Ground Motions for Specified Earthquake and Site Characteristics”, Earthquake Engineering and Structural Dynamics, 2010, 39 (10), 1155-1180.
SeismoSoft Group, “SeismoArtif Release 2016”, SeismoSoft Company, Pavia, Italy, 2016a.
SeismoSoft Group, “SeismoSpect Release 2016”, SeismoSoft Company, Pavia, Italy, 2016b.
Shahi SK, Baker JW, “Regression models for predicting the probability of near-fault earthquake ground motion pulses, and their period”, Proceedings of the 11th International Conference on Applications of Statistics and Probability in Civil Engineering, Zurich, Switzerland, 2011.
Shahjouei A, Pezeshk S, “Synthetic Seismograms Using a Hybrid Broadband Ground-Motion Simulation Approach: Application to Central and Eastern United States”, Bulletin of the Seismological Society of America, 2015, 105 (2A), 686-705.
Soghrat MR, Khaji N, Zafarani H, “Simulation of Strong Ground Motion in Northern Iran Using the Specific Barrier Model”, Geophysical Journal International, 2012, 188 (2), 645-679.
Storchak DA, Di Giacomo D, Bondar I, Harris J, Engdahl ER, Lee WHK, Villasenor A, Bormann P, Ferrari G, “ISC-GEM Global Instrumental Earthquake Catalogue (1900-2009)”, GEM Technical Report 2012- 01 V1.0.0, 128 p.; Global Earthquake Model (GEM), Pavia, Italy, 2012.
Vafaie J, Taghikhany T, Tehranizadeh M, “Near Field Effect on Horizontal Equal Hazard Spectrum of Tabriz City in North West of Iran”, International Journal of Civil Engineering, 2011, 9 (1), 49-56.
Wells DL, Coppersmith KJ, “New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area and Surface Displacement”, Bulletin of Seismological Society of America, 1994, 84 (4),974-1002.
Wossner J, Treml M, Wenzel F, “Simulation of MW= 6.0 Earthquakes in the Upper Rhinegraben Using Empirical Green Functions”, Geophysical Journal International, 2002, 151 (2), 487-500.
Zafarani H, Mousavi M, Noorzad AS, Ansari A, “Calibration of the Specific Barrier Model to Iranian Plateau Earthquakes and Development of Physically based Attenuation Relationships for Iran”, Soil Dynamics and Earthquake Engineering, 2008, 28 (7), 550-576.
Zentner I, Allain F, Humbert N, Caudron M, “Generation of Spectrum Compatible Ground Motion and its Use in Regulatory and Performance-Based Seismic Analysis”, Proceedings of the 9th International Conference on Structural Dynamics (EURODYN), Porto, Portugal, 30 June- 2 July, 2014, pp 381-386.
Zolfaghari MR, “Development of a Synthetically Generated Earthquake Catalogue towards Assessment of Probabilistic Seismic Hazard for Tehran”, Bulletin of Earthquake Engineering, 2015, 76 (1), 497-514.