بررسی عملکرد نانو‌سیلیس بر تثبیت بیولوژیکی دو نوع خاک ماسه‌ای (بد دانه‌بندی شده و سیلت‌دار)

نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 دانشکده فنی و مهندسی، دانشگاه محقق اردبیلی، اردبیل

2 دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل

چکیده

خاک نقش مهمی در ساختار هر سازه­ای دارد و با گذشت زمان نیاز به بهسازی خاک ­های ضعیف از بدیهی‌ترین قسمت­ های پروژه­ های عمرانی می‌باشد. در این مطالعه برای بهسازی خاک ماسه‌ای از ترکیب نانوسیلیس و روش رسوب میکروبی کلسیم کربنات، که یک روش بهسازی پایدار و دوستدار محیط زیست است، استفاده شد. در این روش، اوره موجود در محیط به­ وسیله باکتری اسپوروسارسینا یوریا (Sporosarcina ureae) هیدرولیز شده و به ­وسیله شبکه­ ای از واکنش­ های بیوشیمیایی رسوب کلسیم کربنات شکل می‌شود و این باعث افزایش مقاومت خاک می­گردد. عوامل مورد بررسی در این مطالعه، شامل غلظت مواد واکنش­دهنده، زمان عملآوری، تغییرات درصد سیلت بر رفتار خاک ماسه ­ای و احتمال سازگاری باکتری با نانو سیلیس بودند. در این مطالعه نتایج آزمایش­ها نشان داد، پارامترهای مقاومت برشی خاک توسط تأثیر توأمان باکتری و نانو‌سیلیس بهبود یافته است و در حضور نانوسیلیس میزان مقاومت برشی خاک ماسه‌ای بهسازی شده بیولوژیکی تا 5/4 برابر افزایش پیدا کرد. میزان چسبندگی در خاک ماسه‌ای از 1/0 به kPa186 و زاویه اصطکاک خاک به حدود 6/35 درجه رسید، که در مقایسه با ماسه سست بهسازی نشده، زاویه اصطحکاک داخلی افزایش حدود 12% را نشان می‌دهد. در نمونه‌های ماسه سیلتی، بیشینه مقاومت نیز افزایش یافت. در نمونه‌‌ خاک با 30% سیلت، حداکثر مقاومت برشی در تنش kPa50 با مقدار افزایش تا 81% مشاهده شد، همچنین حداکثر افزایش مقاومت برشی در تمامی تنش‌ها برای نمونه‌‌ حاوی 30% سیلیت رخ داد. در ضمن عمده تأثیر بر روی زاویه اصطکاک داخلی در نمونه 30% سیلت پس از روز 14 عمل­ آوری به ­دست آمد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Nano Silica Performance on Biological Stabilization of Two Types of Sandy Soils (Poorly Granulated and Silty)

نویسندگان [English]

  • Alireza Negahdar 1
  • Moen Khoshdel Sangdeh 1
  • Akbar Ghavidel 2
1 Faculty of Civil Engineering, University of Mohaghegh Ardabili, Ardabil, Iran
2 Faculty of Agricultural Sciences and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
چکیده [English]

The increasing population of the world indicates the development of urban areas, and consequently the use of appropriate methods to improve sandy soils in these areas, led engineers to think of inventing methods to improve the properties of sandy soils. One of these efficient methods to modify the behavior of unsuitable soils in geotechnical engineering is to change the properties of problematic soils, which is called improvement. In this regard, sandy soil is improved by adding materials to improve mechanical properties (compressibility, hardness, shear strength, permeability, etc.). In this study, the undeniable role of nanoparticles in the improvement of sandy soil and the effect of nanosilica along with bacteria in the biological improvement of soil samples that have not been tested, was investigated (Dejong et al., 2010). Controlling the distribution at the site of bacterial and reactant activity and the results of calcium carbonate distribution and related engineering properties below the soil surface is a major challenge for future improvements, especially if bioremediation in a surface or deep soil system (To replace the method of deep soil improvement with artificial lime). In order to commercialize the bioremediation process, further optimizations in the performance of the biological deposition process (improving the effective use of bacteria, reactants and reducing heterogeneity) should be done (Sharma et al., 2016). Therefore, the aim of this study was to investigate the compatibility of nanosilica with bacteria in order to be able to use minerals to increase the strength of biologically improved soil properties.

کلیدواژه‌ها [English]

  • Soil improvement
  • Microbial induced calcite precipitation
  • Shear Strength
  • Bacteria
  • Sand
آبادی ک، شوش پاشا ا، شوش ­پاشا ع، "بررسی تأثیر افزودن ژل نانوسیلیس بر سختی و پارامترهای مقاومت برشی ماسه بابلسر با استفاده از آزمایش سه محوری"، کنفرانس بین­ المللی پژوهش‌های نوین در علوم مهندسی، تهران، مؤسسه مدیریت دانش شباک، دانشگاه تهران، ۱۳۹۵.
گل­ محمدی س، حاجی­ علیلو م، ابراهیمی س، محسن­ زاده آ، ملکی م، تأثیر دانه­ بندی ماسه بر روی مقاومت برشی نمونه­ های بهسازی شده به روش میکروبیولوژیکی، نهمین کنگره ملّی مهندسی عمران مشهد، 1395.
Al Qabany A, Soga K, Santamarina C, “Factors affecting efficiency of microbially induced calcite precipitation”, Journal of Geotechnical and Geoenvironmental Engineering, 138 (8), 992-1001.
Al-Thawadi S, “High strength in-situ biocementation of soil by calcite precipitating locally isolated ureolytic bacteria (Doctoral dissertation, Murdoch University), 2008.
Azadi M, Pouri S, “Estimation of Reconstructed Strength of Disturbed Biologically Cemented Sand under Unconfined Compression Tests”, Arabian Journal for Science and Engineering, 41 (12), 4847-4854.
Canakci H, Sidik W, Kilic IH, “Effect of bacterial calcium carbonate precipitation on compressibility and shear strength of organic soil”, Soils and Foundations, 2015, 55 (5), 1211-1221.
Chou CW, Seagren EA, Aydilek AH, Lai M, “Biocalcification of sand through ureolysis”, Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137 (12), 1179-1189.
DeJong JT, Mortensen BM, Martinez BC, Nelson DC, “Bio-mediated soil improvement”, Ecological Engineering, 2010, 36 (2), 197-210.
Fahmi A, Katebi H, Hajialilue Bonab M, Samadi Kafil H, “Microbial sand stabilization using corn steep liquor culture media and industrial calcium reagents in cementation solutions”, Industrial Biotechnology, 2018, 14 (5), 270-275.
Harkes MP, Van Paassen LA, Booster JL, Whiffin VS, Van Loosdrecht MC, “Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement”, Ecological Engineering, 36 (2), 112-117.
Jawad F, Zheng JJ, “Improving poorly graded fine sand with microbial induced calcite precipitation”, Current Journal of Applied Science and Technology, 2016, 1-9.
Lin H, Suleiman MT, Brown DG, Kavazanjian Jr E, “Mechanical behavior of sands treated by microbially induced carbonate precipitation”, Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142 (2), 04015066.
Mamo BG, Banoth KK, Dey A, “Effect of strain rate on shear strength parameter of sand”, In Proceedings of the 50th Indian Geotechnical Conference, Pune, India, 2015.
Qabany AA, Soga K, “Effect of chemical treatment used in MICP on engineering properties of cemented soils”, In Bio-and Chemo-Mechanical Processes in Geotechnical Engineering: Géotechnique Symposium in Print, 2013 (107-115), ICE Publishing, 2014
Ramachandran SK, Ramakrishnan V, Bang SS, “Remediation of concrete using micro-organisms”, ACI Materials Journal-American Concrete Institute, 98 (1), 3-9.
Rebata‐Landa V, Santamarina JC, “Mechanical limits to microbial activity in deep sediments”, Geochemistry, Geophysics, Geosystems, 2006, 7 (11).
Rebata-Landa V, Microbial activity in sediments: effects on soil behavior (Doctoral dissertation, Georgia Institute of Technology), 2007.
Sharma A, Ramkrishnan R, “Study on effect of microbial induced calcite precipitates on strength of fine grained soils”, Perspectives in Science, 2016, 8, 198-202.
Van der Star WRL, Van Wijngaarden WK, Van Paassen LA, Van Baalen LR, Zwieten G, “Stabilization of gravel deposits using microorganisms”, In Proceedings of the 15th European Conference on Soil Mechanics and Geotechnical Engineering, Athens, Greece, 5-9 October 2011. IOS Press.
Van Paassen LA, Ghose R, Van Der Linden TJ, Van Der Star WR, Van Loosdrecht MC, “Quantifying biomediated ground improvement by ureolysis: large-scale biogrout experiment”, Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136 (12), 1721-1728.
Van Paassen LA, Harkes MP, Van Zwieten GA, Van Der Zon WH, Van Der Star WRL, Van Loosdrecht MCM, “October. Scale up of BioGrout: a biological ground reinforcement method”, In Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering, 2009, (2328-2333). IOS Press, Lansdale, PA.
Whiffin VS, Van Paassen LA, Harkes MP, “Microbial carbonate precipitation as a soil improvement technique”, Geomicrobiology Journal, 24 (5), 417-423.