تجزیه فتوکاتالیستی فنل از آب با استفاده از نانوذره TiO2 تثبیت شده در حضور اشعه UV‎

نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 گروه عمران محیط زیست دانشکده مهندسی عمران دانشگاه صنعتی نوشیروانی بابل

2 دانشگاه صنعتی نوشیروانی بابل، مدیر مرکز کلی مطالعات و تحقیقات دریای خزر

3 گروه عمران محیط زیست، دانشگاه صنعتی نوشیروانی بابل

چکیده

استفاده از آب­های نامتعارف به منظور حل مشکلات کم­آبی بسیار کارآمد است. مطالعات بر روی این منابع نشان داده که غلظت برخی آلاینده­ها بیش از حد مجاز می­باشد، ولی با استفاده از روش­های گوناگون می­توان حذف این آلاینده­ها را موجب شد. استفاده از فتوکاتالیست، از روش­های نوین حذف آلاینده­ها از محلول­های آبی است. در این پژوهش حذف فنل با غلظت اولیه 50 میلی­گرم در لیتر، با استفاده از فتوکاتالیست دی­اکسید تیتانیوم مورد بررسی قرار گرفت. نانوذره دی­اکسید تیتانیوم با غلظت 50 گرم بر مترمربع بر روی سطح پلکسی­گلس تثبیت شد و برای فعال­سازی از لامپ­های فرابنفش با توان­های 25، 50، 75 و 100 استفاده گردید. نتایج نشان می‌دهد که بیش‌ترین میزان حذف فنل با تابش 100 وات اشعه فرابنفش در 11=pH برابر با 5/91 درصد بوده است.

کلیدواژه‌ها


عنوان مقاله [English]

The Degradation of Phenol in Water Solution by Immobilized Tio2 Photocatalysis

نویسندگان [English]

  • Elaheh Faghih Nasiri 1
  • Daryoush Yousefi Kebria 2
  • Farhad Qaderi 3
1 Department of Civil & Environmental Engineering,Faculty of Civil Engineering, Babol Noshirvani University of Technology, Babol
2 Noshirvani Institute of Technology Director of Caspian Sea National Research Center
3 Faculty of Civil Engineering, Babol Noshirvani University of Technology, Babol
چکیده [English]

The use of unconventional water is very effective in solving dehydration problems. The studies on these sources have shown that concentrations of some pollutants are higher than standard, but by employing different methods the researchers would eliminate the pollutants. The use of photocatalyst is a novel method for removing pollutants from aqueous solutions(Ehrampoosh et al., 2011, Konstantinou and Albanis, 2004).In this research, the photocatalytic process of titanium dioxide stabilized on the surface of plexiglass in the removal of phenol in different pH levels (3, 7 and 11) and different powers of ultraviolet radiation (25, 50, 75 and 100 watts) was comprehensively investigated.

کلیدواژه‌ها [English]

  • Phenol
  • Titanium Dioxide
  • Nanophotocatalyst
  • ultraviolet radiation
رحمانی ع، عنایتی موفق ع، "بررسی امکان تجزیه فتوکاتالیستی فنل با استفاده از فرآیند UV/ TiO2 "، نشریه آب و فاضلاب، 1385، دوره 17، (2)، 32-37.
زمان­خان؛ ح. آیتی؛ ب. و گنجی­دوست؛ ح، "تجزیه فتوکاتالیستی فنل به وسیله نانوذرات روی اکسید تثبیت شده بر بستر بتنی"، نشریه شیمی و مهندسی شیمی ایران، 1391، دوره 31، (3) و (4)، 9-19.
موریسون و بوید، مترجمان، بکاولی م، هروی م، رحیم­زاده م، شیمی آلی، 1376، ویرایش ششم، جلد دوم، 1029-1039.
مؤسسه استاندارد و تحقیقات صنعتی ایران، آب آشامیدنی- ویژگی­های فیزیکی و شیمیایی، استاندارد 1053، تجدید نظر پنجم.
نوشادی م، قنبری­زاده پ، "بررسی کارایی اثـر نـانـو ذرات نقره در گنـدزدایـی آب آشامیدنی"، نشریه مهندسی عمران و محیط زیست، 1395، 46 (1)، شماره 82، 83-93
Phenolics (Spectrophotometric, Manual 4-AAP with Distillation)- Method, 9065, Environmental Protection Agency.
Busca G, Berardinelli S, Resini C, Arrighi L, “Technologies for the removal of phenol from fluid streams: a short review of recent developments”, Journal of Hazardous Materials, 2008, 160, 288-265.
Ehrampoosh M, Moussavi G, Ghaneian M, Rahimi S, Ahmadian M, “Removal of methylene blue dye from textile simulated sample using tubular reactor and TiO2/UV-C photocatalytic process”, Journal of Environmental Health Science & Engineering, 2011, 8, 34-40.
Gaya UI, “Abdullah AH, Heterogeneou photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems”, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2008, 9, 1-12.
Ipek U, “Phenol removal capacity of RO with and without pre-treatment. Filtration & separation”, 2004, 41, 39-40.
Jeni J, Kanmani S, “Solar nanophotocatalytic decolorisation of reactive dyes using titanium dioxide”, Iranian Journal of Environmental Health Science & Engineering, 2011, 8, 15.
Klavarioti M, Mantzavinos D, Kassinos D, “Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes”, Environment international, 2009, 35, 402-417.
Konstantinou IK, Albanis TA, “TiO2- assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review”, Applied Catalysis B: Environmental, 2004, 49, 10-14.
Mahmoodi NM, Arami M, Limaee NY, Gharanjig K, Ardejani FD, “Decolorization and mineralization of textile dyes at solution bulk by heterogeneous nanophotocatalysis using immobilized nanoparticles of titanium dioxide”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 29, 125-131.
Martínez-Huitle CA, Brillas E, “Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review”, Applied Catalysis B: Environmental, 2009, 87, 105-145.
Nitoi I, Oancea P, Raileanu M, Crisan M, Constantin L, Cristea I, “UV-VIS photocatalytic degradation of nitrobenzene from water using heavy metal doped titania”, Journal of Industrial and Engineering Chemistry, 2015, 21, 677-682.
Rappoport Z, “The Chemistry of Phenols”, 2004, 2 Volume Set, John Wiley & Sons
Sadik, WA-A, Nashed AW, “UV-induced decolourization of acid alizarine violet N by homogeneous advanced oxidation”, 2008.
Processes Chemical Engineering Journal, 137, 525-528.
Salah NH, Bouhelassaa M, Bekkouche S, Boultii A, “Study of photocatalytic degradation of phenol”, Desalination, 2004, 166, 347-354.
SamarghanDI M, Nouri J, Mesdaghinia A, Mahvi A, Nasseri S Vaezi F, “Efficiency removal of phenol, lead and cadmium by means of UV/TiO2/H2O2 processes”, International Journal of Environmental Science & Technology, 2007, 4, 19-25.
Shahrezaei F, Akhbari A, Rostami A, “Photodegradation and removal of phenol and phenolic derivatives from petroleum refinery wastewater using nanoparticles of TiO2”, IJEE, 2012, 3, 267-274.
Wang KH, Hsieh YH, Chou MY, Chang CY, “Photocatalytic degradation of 2-chloro and 2-nitrophenol by titanium dioxide suspensions in aqueous solution”, Applied Catalysis B: Environmental, 1999, 21, 1-8.
World Health Organization, Phenol; health and safety guide, 1994.
Xie B, Zhang H, Cai P, Qiu R, Xiong Y, “Simultaneous photocatalytic reduction of Cr (VI) and oxidation of phenol over monoclinic BiVO4 under visible light irradiation”, Chemosphere, 2006, 63, 956-963.
Zhang Q, Cheng X, Zheng C, Feng X, Qiu G, Tan W, Liu F, “Roles of manganese oxides in degradation of phenol under UV-Vis irradiation: Adsorption, oxidation, and photocatalysis”, Journal of Environmental Sciences, 2011, 23, 1904-1910.
Zou SW, How, CW, Chen JP, “Photocatalytic treatment of wastewater contaminated with organic waste and copper ions from the semiconductor industry”, Industrial & Engineering Chemistry Research, 2007, 46, 6566-6571.