پیش‌بینی چند ایستگاهه نیترات با بهره‌گیری از ابزار هوش مصنوعی و محاسبات نرم

نوع مقاله : مقاله کامل پژوهشی

نویسندگان

دانشکده مهندسی عمران، دانشگاه تبریز

چکیده

در این مقاله مدل­سازی چند ایستگاهه رواناب- نیترات در حوضه آبریز Little River Watershed (LRW)، با استفاده از تبدیل موجک و نقشه­های خود سازمانده و مدل­های هوش مصنوعی انجام گردید. به طوری که سری­های زمانی رواناب- نیترات توسط تبدیل موجک تجزیه گشته و سپس زیرسری­های تجزیه شده توسط نقشه­های خود سازمانده خوشه­بندی گردید. در ادامه، معیار استخراج ویژگی (اطلاعات مشترک) برای انتخاب نماینده از هر خوشه جهت ورود به مدل­های هوش مصنوعی شبکه عصبی مصنوعی و ماشین بردار پشتیبان برای پیش­بینی نیترات خروجی حوضه آبریز LRW به کار گرفته شد. مدل­سازی چند ایستگاهه نیترات بر اساس خاصیت فصلی بودن انجام شده و با مدل­سازی چند ایستگاهه بر اساس خاصیت مارکف مقایسه گردید. نتایج نشان داد که مدل­های هوش مصنوعی ترکیب شده با تبدیل موجک، نقشه­های خود سازمانده و اطلاعات مشترک توانایی پیش­بینی نیترات چند ایستگاهه را نسبت به مدل­های هوش مصنوعی که از خاصیت مارکف بهره می­برند تا حد قابل قبولی بهبود می­بخشد. به طور کلی، استفاده از خاصیت فصلی­بودن پدیده­ها به همراه کاهش ابعاد ورودی­ها، می­تواند به مدل­های هوش مصنوعی در جهت استفاده از اطلاعات خالص داده­های مشاهداتی کمک کند.

کلیدواژه‌ها


عنوان مقاله [English]

Multi-Station Nitrate Prediction via Artificial Intelligence and Soft Computing Tools

نویسندگان [English]

  • Elnaz Sharghi
  • Vahid Nourani
  • Gholamreza Andalib
Faculty of Civil Engineering, University of Tabriz
چکیده [English]

The diffusion of nitrate pollution in watersheds is due to complex biochemical and hydrological procedures linked to the cycle of nitrogen and water. Nitrate load comes from different sources such as wastewater treatment plants, runoff of fertilized lawns and cropland, failing on-site septic systems, runoff of animal manure storage areas, and industrial discharges that contain corrosion inhibitors. Loss of nitrate to surface and groundwater can reduce farm productivity, harm the environment, and affect drinking water quality. Large uncertainties and limited physical understanding of the water quality such as nitrate barricade the process-based modeling and seek a black box relationship between driving and resultant variables. Therefore, in this paper Multi-Station (MS) modeling of nitrate of the Little River Watershed (LRW) has been done. Hence, MS nitrate modeling is considered whereby nitrate loads of the inside and outlet of the LRW could be predicted. As a more explanation, the nitrate of upper sub-basins are employed for predictions of the interior sub-basins nitrate loads, and then, central sub-basins are participated in outlet nitrate prediction of the LRW. So, MS model can prepare a reliable platform to get information about the amount of nitrate in crucial places of the LRW. For this purpose, two scenarios with distinct views are used for MS nitrate modeling to identify the suitable strategy for future hydro-environmental researches. In the first scenario, Markovian characteristics of the streamflow-nitrate process are proposed as the base of the MS model, where antecedent of streamflow and nitrate time series of sub-basins are shared in nitrate modeling. On the other hand, non-linear feature extraction criterion of MI that is more suitable measure regarding the linear measure of Correlation Coefficient (CC) is employed for the selection of appropriate inputs of the Least Square SVM (LSSVM) and Feed Forward Neural Network (FFNN) models to avoid from the time consuming trial-error process of input selection. In the second scenario, seasonality-based characteristics of the streamflow-nitrate process are focused. Where, streamflow and nitrate time series of the sub-basins are decomposed by the wavelet transforms at a suitable level for clarifying spectral and temporal information of the time series. Then, as a new feature extraction method, both SOM and MI are respectively employed for clustering homogeneous sub-series and selecting clusters' proper agents, to be fed into LSSVM and FFNN models for MS nitrate load modeling of the LRW.
 

کلیدواژه‌ها [English]

  • mutual information
  • wavelet transform
  • Self-organizing map
  • Artificial intelligence
  • Little river watershed
ریاحی­مدوار ح، ایوب­زاده س، "تخمین ضریب پراکندگی طولی آلـــودگی با استفاده از سیستـــم استنتاج فازی- عصبـی انطباقی"، نشریه آب و فاضلاب، 1387، 67، 34-46.
علیائی ا، بانژاد ح، صمدی م، رحمانی ع، ساقی م، "ارزیابی کارایی شبکه عصبی مصنوعی در پیش بینی شاخص­های کیفی (BOD و DO) آب رودخانه دره مرادبیک همدان"، مجله دانش آب و خاک، 1389، 20، 199-210.
میرزائی م، ریاحی بختیاری ع، سلمان ماهینی ع، غلامعلی­فرد م، "مدل­سازی ارتباط کیفیت آب­های سطحی و سنجه­های سیمای سرزمین با استفاده از سیستم استنتاج عصبی- فازی (مطالعه موردی: استان مازندران)"، مجله آب و فاضلاب، 1395، 27، 81-92.
Arabgol R, Sartaj M, Asghari K, “Predicting nitrate concentration and its spatial distribution in groundwater resources using support vector machines (SVMs) model”, Environmental Modeling and Assessment, 2016, 21, 71-82.
Bosch DD, Sullivan DG, Sheridan JM, “Hydrologic Impacts of land-use Changes in Coastal Plain Watersheds”, Transactions of the ASABE, 2006, 49 (2), 423-432.
Chang, FJ, Chang LC, Huang CW, Kao IF, “Prediction of monthly regional groundwater levels through hybrid soft-computing techniques”, Journal of Hydrology, 2016, 541, 965-976.
Dixon B, “A case study using support vector machines, neural networks and logistic regression in a GIS to identify wells contaminated with nitrate-N”, Hydrogeology Journal, 2009, 17 , 1507-1520.
Kim T, Valdes JB, “Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks”, Journal of Hydrologic Engineering, 2003, 6, 319-328.
Kohonen T, “Self-Organizing Maps”, Springer-Verlag, Berlin, 1997.
Mallat SG, “A Wavelet Tour of Signal Processing”, second ed. Academic Press, San Diego, 1998.
Nourani V, Andalib G, “Daily and monthly suspended sediment load predictions using wavelet based artificial intelligence approaches”, Journal of Mountain Science, 2015, 12(1), 85-100.
Nourani V, Baghanam AH, Adamowski J, Kisi O, “Applications of hybrid Wavelet–Artificial Intelligence models in hydrology: A review”, Journal of Hydrology, 2014, 514, 358-377.
Nourani V, Khanghah TR, Baghanam AH, 2015. “Application of entropy concept for input selection of Wavelet-ANN based rainfall-runoff modeling”, Journal of Environmental Informatics, 2015, 26, 52-70.
Nourani V, Komasi M, “A geomorphology-based ANFIS model for multi-station modeling of rainfall–runoff process”, Journal of Hydrology, 2013, 490, 41-55.
Nourani V, Parhizkar M, “Conjunction of SOM-based feature extraction method and hybrid wavelet-ANN approach for rainfall–runoff modeling”, Journal of Hydroinformatics, 2013, 15, 829-848.
Ravansalar M, Rajaee T, Zounemat-Kermani M, “A wavelet-linear genetic programming model for sodium (Na+) concentration forecasting in rivers”, Journal of Hydrology, 2015, 537, 398-407.
Sarkar A, Pandey P, “River water quality modelling using artificial neural network technique”, Aquatic Procedia, 2015, 4, 1070-1077.
Shannon CE, “A mathematical theory of communications I and II. Bell”, System Technical Journal, 1948, 27, 379-443.
Suykens JAK, Vandewalle J, “Least square support vector machine classifiers”, Neural Processing Letters, 1999, 9, 293-300.
Turan ME, Yurdusev MA, “River flow estimation from upstream flow records by artificial intelligence methods”, Journal of Hydrology, 2009, 369, 71-77.
Yang HH, Vuuren SV, Sharma S, Hermansky H, “Relevance of time-frequency features for phonetic and speaker-channel classification”, Speech Communication, 2000, 31, 35-50.