استفاده از محاسبات نرم در پیش‌بینی و برآورد دبی جریان و بررسی جریان زیست-محیطی (مطالعه موردی: رودخانه خرخره‌چای)

نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 عضو هیئت علمی دانشگاه ارومیه، گروه مهندسی آب، ارومیه

2 دانشگاه ارومیه

3 دانشکده کشاورزی، دانشگاه ارومیه

چکیده

پیش­بینی جریان رودخانه و جریان زیست­محیطی به منظور تأمین نیاز اکوسیستم رودخانه، بهره­برداری و برنامه­ریزی منابع آب، لازم و ضروری است. در تحقیق حاضر، ابتدا عملکرد مدل­های فازی- عصبی و برنامه­ریزی بیان ژن برای پیش­بینی جریان رودخانه خرخره­چای مورد بررسی قرار گرفت. رودخانه خرخره­چای از شعب رودخانه سقز در استان کردستان است که از تلاقی سه شاخه آب رغجو، ایراب، پیرسلیمان در روستای خرخره­چای به وجود آمده است. در مهندسی منابع آب استفاده از داده­های ایستگاه مجاور و مشابه جهت پیش­بینی جریان در ایستگاه فاقد آمار مورد توجه می­باشد. بدین منظور از داده­های روان آب ماهانه ایستگاه هیدرومتری صفاخانه بر روی رودخانه ساروق­چای به مدت 21 سال جهت پیش­بینی جریان خرخره در ایستگاه سنته استفاده گردید. همچنین در این تحقیق اثرات دوره­ای و فصلی جریان ماهانه بر روی عملکرد پیش­بینی مدل­ها مورد ارزیابی قرار گرفت. پس از پیش­بینی جریان، در بخش دوم تحقیق جریان زیست­محیطی رودخانه ساروق­چای با استفاده از دو روش اکو- هیدرولوژیک DRM،FDC Shifting  برآورد شد. در بخش اول مطالعه، نتایج نشان داد که روش­های فازی- عصبی و برنامه­ریزی بیان ژن نتایج قابل قبولی در پیش­بینی جریان رودخانه داشتند. با این وجود مدل برنامه­ریزی بیان ژن به دلیل ارائه رابطه ریاضی حاکم بر مسأله مورد مطالعه نسبت به مدل فازی- عصبی برتری داشت. نتایج بخش دوم تحقیق نشان داد که برای حفظ رودخانه ساروق­چای در حداقل وضعیت اکولوژیکی قابل قبول (کلاس مدیریت زیست­محیطی C)، به طور متوسط، شدت جریان 05/2 مترمکعب بر ثانیه (معادل 23 درصد متوسط جریان سالانه) در طول رودخانه تا دریاچه ارومیه، بایستی برقرار باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Use of Soft Calculations at Estimation and Prediction of Environmental Flow Discharge (Case Study: Khorkhoreh Chay River)

نویسندگان [English]

  • Javad Behmanesh 1
  • Somayeh Mostafavi 2
  • Sarvin Zamanzad Ghavidel 3
1 Faculty of Agriculture, University of Urmia, Urmia, Iran
2 Faculty of Agriculture, University of Urmia, Urmia, Iran
3 Faculty of Agriculture, University of Urmia
چکیده [English]

Recently, according to the water crisis, special ecological conditions of Urmia lake and the importance of predicting and estimating the environmental requirement of rivers in the Urmia lake watershed, the present study was carried out in the Zarrinerud river basin. It is noted that the Zarrinerud river supplies the majority of water for urmia lake. This research is presented in two main sections. The first part predicts the monthly flow at the station without data using two intelligent methods including ANFIS and GEP. In the second section, the estimation of environmental flow was done through two methods of FDC shifting and DRM.
 

کلیدواژه‌ها [English]

  • Prediction
  • Environmental flow
  • Urmia lake watershed
  • Gene expression programming
  • Neuro-fuzzy
احمدپور ظ، "شاخص­های رژیم متغیر هیدرولوژیکی در ارزیابی زیست­محیطی رودخانه­ها"، پایان­نامه کارشناسی ارشد دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، 1391.
دستورانی م­ت، شریفی دارانی ح، طالبی ع، مقدم نیا ع، "کارایی شبکه‌های عصبی مصنوعی و سیستم استنتاج عصبی- فازی تطبیقی در مدل‌سازی بارش- رواناب در حوضه آبخیز سد زاینده‌رود"، نشریه آب و فاضلاب، 1390، 22(80)، 125-114.
شاعری کریمی س، "ارزیابی جریان زیست­محیطی رودخانه­ها"، پایان­نامه کارشناسی ارشد دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، 1389.
مهدی­آبادی م، روستایی ن، "تعیین حقابه تالاب گاوخونی، پیش­بینی آب زیست­محیطی رودخانه­ها در شرایط تغییر اقلیم"، دومین همایش تخصصی مهندسی محیط زیست، دانشگاه تهران، 1387.
Aytek A, Alp M, “An application of artificial intelligence for rainfall runoff modelling”, Journal of Earth Systems Science, 2008, 117(2), 145-155.
Aytek A, Kisi O, “A genetic programming approach to suspended sediment modelling”, Journal of Hydrology, 2008,  351, 288-298.
Chang FJ, Chen YC, “Counter propagation fuzzy-neural network modeling approach to real time streamflow prediction”, Journal of Hydrology, 2001, 245, 153-164.
DWAF, “White paper on a National Water Policy for South Africa”, Pretoria, South Africa: Department of Water Affairs and Forestry, 1997.
Dyson M, Bergkamp G, Scanlon J, “Flow: essentials of environmental flows”, Gland, Switzerland and Cambridge, UK: IUCN, 2003.
Ferreira C, “Gene expression programming: a new adaptive algorithm for solving problems”, Complex Systems, 1999, 13(2), 87-129.
Ferreira C, “Gene expression programming: mathematical modeling by an artificial intelligence 2nd ed”, Springer-Verlag, Germany, 2006.
Firat M, Gungor M, “River flow estimation using adaptive neuro fuzzy inference system”, Mathematics and Computers in Simulation, 2007, 75(3), 87-96.
Hughes DA, Hannart P, “A desktop model used to provide an initial estimate of the ecological instream flow requirements of rivers in South Africa”, Journal of Hydrology, 2003, 270, 167-181.
Hughes DA, Munster F, “Hydrological information and techniques to support the determination of the water quantity component of the ecological reserve for rivers”, Report to the Water Research Commission by the Institute for Water Research, Rhodes University, WRC Report No. 867/3/2000, Pretoria, South Africa, 2000.
Hughes DA, Smakhtin VU, “Daily flow time series patching or extension: a spatial interpolation approach based on flow duration curves”, Journal of Hydrological Sciences, 1996, 41(6), 851-871.
Jang JSR, “ANFIS: adaptive-network-based fuzzy inference system”, IEEE Transactions on Systems, Man, and Cybernetics, 1993, 23(3), 665-685.
Kashaigili JJ, Mccartney M, Mahoo HF, “Estimation of environmental flows in the Great Ruaha River Catchment”, Tanzania, Journal of Physics and Chemistry of the Earth, 2007, 32, 1007-1014.
Kennedy P, Condon M, Dowling J, “Torque-ripple minimization in switched reluctant motors using a neuro-fuzzy control strategy”, Proceeding of the IASTED International Conference on Modeling and Simulation, 2003.
Kisi O, “River flow forecasting and estimation using different artificial neural network techniques”, Hydrology Research, 2008, 39(1), 27-40.
Mazvimavi D, Madamombe E, Makurira H, “Assessment of environmental flow requirements for river basin planning in Zimbabwe”, Journal of Physics and Chemistry of the Earth, 2007, 30, 639-647.
Nayak PC, Sudheer KP, Rangan DM, Ramasastri KS, “A neuro-fuzzy computing technique for modeling hydrological time series”, Journal of Hydrology, 2004, 291(1), 52-66.
Pramanik N, Panda RK, “Application of neural network and adaptive neuro-fuzzy inference systems for river flow prediction”, Hydrological sciences journal, 2009, 54(2), 247-260.
Richter BD, Baumgartner JV, Wigington R, Braun DP, “How much water does a river need?”, Freshwater Biology, 1997, 37, 231-249.
Sanikhani H, Kisi O, “River flow estimation and forecasting by using two different adaptive neuro-fuzzy approaches”, Water Resources Management, 2012, 26, 1715-1729.
Shiferaw A, “Environmental flow assessment at the source of the Blue Nile River”, Ethiopia, Master Thesis, Addis Ababa University, Ethiopia, 2007, 64 pp.
Smakhtin VU, Anputhas M, “An assessment of environmental  flow requirements of Indian river basins”, IWMI Research Report 107, International Water Management Institute, Colombo, Sri Lanka, 2006.
Talei A, Chua LHC, Wong TS, “Evaluation of rainfall and discharge inputs used by Adaptive Network-based Fuzzy Inference Systems (ANFIS) in rainfall-runoff modelling”, Journal of Hydrology, 2010, 391(3), 248-262.
Tharme RE, “A global perspective on environmental flow assessment: emerging trends in the development and application of environmental flow methodologies for rivers”, River Research and Applications, 2003, 19, 397-441.