تحلیل ترافیک حرکت- توقف در زنجیره وسایل نقلیه عبوری مبتنی بر تئـوری نامتقارنی

نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 عضو هیات علمی

2 دانشجوی کارشناسی ارشد

3 عضو هیئت علمی دانشگاه تربیت مدرس

4 عمران- راه و ترابری، دانشگاه پیام نور تهران

چکیده

آنالیز ترافیک حرکت- توقف که به سبب دلایل غیر قابل پیش­بینی مکرراً در آزادراه­ها مشاهده می­گردد به منظور مدل­سازی شکل و انتشار آشفتگی و تخمین اثرات ازدحام در جریان ترافیک مهم می­باشد. تئوری­های بسیار زیادی در علم ترافیک به منظور شناسایی ازدحام ترافیکی مبتنی بر قوانین علم فیزیک مانند ترمودینامیک و سیالات ارائه گردیده است؛ اما این تئوری ها تا کنون نتوانستند پیچیدگی پاسخ‌های مختلف رانندگی در وضعیت‌های مختلف ترافیکی را به ویژه در ازدحام ترافیکی، توضیح بدهند. در این مقاله، به منظور شناسایی نمودن ترافیک حرکت- توقف در سطح جزیی­نگر، مبتنی بر تئوری نامتقارنی و داده­های عبوری NGSIM، جریان ترافیک به پنج فاز: جریان آزاد، فاز افزایش و کاهش شتاب، کرانه­ای، پایدار تقسیم­بندی می­گردد که جریان ترافیک در محدوده بین دو منحنی فاز افزایش و کاهش شتاب در تعادل ترافیکی می­باشد. مبتنی بر تئوری نامتقارنی، ویژگی­های پاسخ رفتاری متداول رانندگی، خطاهای عملکردی، پیش­بینی و همچنین آنالیز و توصیف دقیقی از تحلیل و انتقال حلقه ترافیک حرکت- توقف به سه مورد ایجاد، رشد و ناپدید شدن امواج حرکت- توقف ارائه می­گردد.

کلیدواژه‌ها


عنوان مقاله [English]

Identifying Stop and Go Traffic in Trajectory of Vehicle Platoon Based on Asymmetric Theory

نویسندگان [English]

  • Ali Abdi 1
  • arsalan salehikalam 2
  • Mahmood Saffarzadeh 3
  • Gholamreza Mehdizadeh 4
1 Faculty of Civil Engineering, Imam Khomeini International University, Qazvin
2 Imam Khomeini International University, Qazvin
3 Civil Engineering Faculty, Tarbiat Modares University, Tehran
4 Payam-e-Noor University, Tehran
چکیده [English]

Analyzing stop and go traffic that observes unexpected reasons on freeways is important for modeling generation and growth oscillation and estimate congestion effects on traffic flow. Numerous theories on traffic have been developed as traffic congestion gains to model congestion traffic, many traffic theorists have adopted theories from other fields such as fluid mechanics and thermodynamics. However, these theories cannot explain the complicated driving behavior patterns from the fluid mechanics’ perspective. In these paper, because stop and go traffic identify at a microscopic level and based on asymmetric theory and trajectory data of  NGSIM, traffic flow state can be classified into five phases according to speed and movement of the vehicle: Free flow, acceleration, deceleration, stationary and coasting phases and also, traffic flow departs between boundaries of acceleration and deceleration phases. Based on asymmetric theory can analyze driver’s behavior responses: maneuvering errors and anticipation, and also life cycle of stop-and-go Traffic can demonstrate three cases: Generation, Growth, Dissipation.

کلیدواژه‌ها [English]

  • Life cycle stop and go traffic
  • Asymmetric theory
  • Driver’s behavior responses
  • trajectory data of NGSIM
Bilbao-Ubillos, J., “The Costs of Urban Congestion: Estimation of Welfare Losses Arising From Congestion on Cross-Town Link Road”, Transportation Research Part A42 (8), 1098-11082, 2008.
Zheng, Z., Ahn, S., Chen, D., Laval, J., “Applications of Wavelet Transform For Analysis of Freeway Traffic: Bottlenecks, Transient Traffic, and Traffic Oscillations”, Transportation Research Part B 45 (2), 372-384, 2011a.
Zheng, Z., Ahn, S., Chen, D., Laval, J.A., “Freeway Traffic Oscillations: Microscopic Analysis of Formations and Propagations Using Wavelet Transform”, The 19th International Symposium on Transportation and Traffic flow Theory, 717-731, 2011b.
Ahn, S., Cassidy, M., “Freeway Traffic Oscillations and Vehicle Lane-Change Manoeuvres”, In: Heydecker, B., Bell, M., Allsop, R. (Eds.), Forthcoming in 17th International Symposium on Transportation and Traffic Theory. Elsevier, NewYork, 2006.
Laval, J. A., Daganzo, C. F., “Lane-changing in Traffic Streams”, Transportation Research Part B 40 (3), 251-264, 2006.
Laval, J. A., “Linking Synchronized Flow and Kinematic Wave Theory. In: Schadschneider”, A.and Poschel, T., Kuhne, R., Schreckenberg, M., Wolf, D. (Eds.), Traffic and Granular Flow ’05. Springer, pp. 521-526, 2005.
Koshi, M., Kuwahara, M., Akahane, H., “Capacity of sags and tunnels in japanese motorways”, ITE Journal (May issue), 17-22, 1992.
Laval, J. A., “Stochastic Processes of Moving Bottlenecks: Approximate formulas for highway capacity. Transportation Research Record 1988, 86-91, 2006.
Lighthill, M. J., Whitham, G. B., "On kinematic waves: II. "A theory of traffic flow on long crowded roads”, Proceedings of the Royal Society, London, Ser.A 229 1178, pp. 317-345, 1955.
Richards, P. I., “Shock waves on the highway. Operations Research 4”, pp.42_51, 1956.
Daganzo, C. F., “Fundamentals of Transportation and Traffic Operations.Pergamon”, 1997.
Nagel, K., Nelson, P., “A Critical Comparison of the Kinematic Wave Model with Observational Data”, Transportation and Traffic Theory, Proceedings of the 16th International Symposium on Transportation and Traffic Theory, pp. 145-163, 2005
Banks, J., “Two-capacity Phenomenon at Freeway Bottlenecks: A Basis for Ramp Metering”, Transportation Research Record 1320, pp. 83-90, 1991.
Kerner, B. S., Rehborn, H., "Experimental Features and Characteristics of Traffic Jams”, Physical Review E Vol. 53, pp. R1297-R1300, 1996.
Kerner, B. S., Rehborn, H., "Theory of Congested Traffic Flow: Self Organization without Bottlenecks”, Proceedings of the 14th International Symposium on Transportation and Traffic Theory, Pergamon, New York, pp.147-171, 1999.
Kerner, B., Three-phase traffic theory and highway capacity. Physica A 333, 2004, pp. 379-440.
Ahn, S., Cassidy, M., “Freeway Traffic Oscillations and Vehicle Lane-Change Maneuvers”, Transportation and Traffic Theory 2007.
Daganzo, C. F., “In Traffic Flow, Cellular Automata= Kinematic Waves”, Transportation Research Part B Vol. 40, pp. 396-403, 2006.
Newell, G. F., “A Simplified Car-following theory: a Lower Order Model, Transportation Research Part B Vol”, 36, pp. 196-205, 2002.
Del Castillo, J., M., “Propagation of Perturbations in Dense Traffic Flow: A Model and Its Implications”, Transportation Research Part B Vol. 35, pp. 367-389, 2001.
Kim, T., Zhang, H. M., “Gap Time and Stochastic Wave Propagation”, IEEE Intelligent Transportation Systems Conference, pp. 88-93. 2004.
Gipps, P.G., “A Behavioural Car-Following Model for Computer Simulation", Transportation Research Part B Vol. 15, pp. 106-111, 1981.
Edie, L. C., “Discussion of Traffic Upstream Measurements and Definitions”, Proceedings of the Second International Symposium on the Theory of Road Traffic Flow, London, pp.139-154, 1965.
Foote, R. S., “Single Lane Traffic Flow Control. Proceedings of the Second International Symposium on the Theory of Road Traffic Flow”, London, pp. 84-103, 1965.
Forbes, T.W., “Human Factor Consideration in Traffic Flow Theory”, Highway research Record 15, pp. 60-66, 1963.
Laval, J. A., Leclercq, L., “A Mechanism to Describe the Formation and Propagation of Stop-and-go Waves in Congested Freeway Traffic”, Philosophical Transactions of the Royal Society A. 368-1928, pp. 4519-4541, 2010.
Zheng, Z., Ahn, S., Chen, D., Laval, J., “Freeway Traffic Oscillations: Microscopic
Analysis of Formations and Propagations using Wavelet Transform”, The 19th International Symposium on Transportation and Traffic Theory, 2010.
Zielke, B. A., Bertini, R. L., Treiber, M. “Empirical Measurement of Freeway Oscillation Characteristics: An International Comparison”, Transportation Research Record: Journal of the Transportation Research Board, No. 2088. pp. 57-67, 2008.
Yeo, H., Skabardonis, A., “Understanding Stop-and-go Traffic In view of Asymmetric Traffic Theory”, Transportation and Traffic theory 2009: Golden Jubilee, Springer, pp. 99-115, 2009.
Yeo, H., “Asymmetric Microscopic Driving Behavior Theory”, Doctoral Dissertation, Department of Civil and Environmental Engineering, University of California, Berkeley, USA, 2008.
Jonghae,S., Hwasoo,Y., Alexander,S., “A Study on the Wave Development andEvolution Characteristics of Stop-and-go Traffic”, for presentation 91th Annual Meeting Transportation Research Board Washington, D.C.January 2012.
Trigs, T., Harris, W., “Reaction Time of Drivers to Road Stimuli”, Department of Psychology, Monash University, Australia, 1982.
Wagner, C., “Asymptotic Solutions for a Multi-Anticipative Car-Following Model”, Physica A, pp. 218-224, 1998.
Treiber, M., Kesting, A., Helbing, D., “Understanding Widely Scattered Traffic Flows, the Capacity Drop, and Platoons as Effects of Variance-Driven Time Gaps”, Physical Review E 74, 016123, 2006.