تحلیل کمانشی قاب های شیب‌دار ساخته شده از مقاطع فولادی دارای ممان اینرسی متغیر با در نظر گرفتن اثرات نیروی محوری ناشی از بارهای مرده

نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 گروه مهندسی عمران- سازه، دانشکده فنی و مهندسی، دانشگاه حکیم سبزواری، سبزوار

2 دانشکده مهندسی، دانشگاه آزاد اسلامی، واحد نیشابور

10.22034/ceej.2025.66747.2429

چکیده

کمانش در ستون ­های قاب­ های شیب­دار یک پدیده مهم است که می­تواند بر پایداری و عملکرد سازه تأثیر بگذارد. رایج ­ترین روش تعیین بار کمانشی ستون­ ها استفاده از مفهوم ضریب طول مؤثر می­ باشد. ضریب طول مؤثر که تابعی از شرایط تکیه ­گاهی است، نقش مهمی در تعیین رفتار کمانشی ستون دارد. با استفاده از این ضریب، طراحی ستون­ ها بدون تحلیل غیرخطی سازه امکان ­پذیر می ­باشد. مطالعات انجام ‌شده جهت تعیین ضریب طول مؤثر و بار بحرانی عمدتاً محدود به اعضای با ممان اینرسی ثابت می باشد. همچنین علاوه بر ممان اینرسی ثابت، در بیشتر تحقیقات بار محوری ناشی از بارهای مرده سازه لحاظ نمی­ گردد، که باعث بروز خطاهایی در محاسبه بار بحرانی می­شود. در این پژوهش بار بحرانی قاب ­های شیب­دار دارای ممان اینرسی متغیر با در نظر گرفتن تأثیر نیروی محوری محاسبه شده است. همچنین تأثیرات شرایط تکیه ­گاهی و درجه گیرداری اتصالات بر بار بحرانی و ضریب طول مؤثر قاب­ های شیب­دار دارای ممان اینرسی متغیر نیز بررسی شده ­اند. با بررسی نتایج معادلات و صحت ­سنجی انجام شده، می­توان نتیجه گرفت که لحاظ نیروی محوری ناشی از بارهای مرده در قاب شیب‌دار با ممان اینرسی متغیر باعث کاهش ضریب طول مؤثر و درنتیجه کاهش میزان بار بحرانی قاب می­شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Buckling Analysis of Gabled Frames Made of Steel Sections with Variable Moment of Inertia Under Dead-Load Axial Effects

نویسندگان [English]

  • Hossein Khosravi 1
  • Mojtaba Lezgy-Nazargah 1
  • Mohammad Reza Zare Borzeshi 2
1 Department of Civil Engineering, Hakim Sabzevari University, Sabzevar 9617976487-397, Iran
2 Department of Civil Engineering, Islamic Azad University, Neyshabur, Iran
چکیده [English]

Thin-walled structures are among the critical and vital infrastructures that have been used in various branches of science. Among the applications of these structures in civil engineering, we can mention the storage tanks containing fluids, domes, dams, and slabs. When the axial compressive force tends to a limit value, with the least lateral load, a significant lateral displacement occurs. This axial compressive force is called the critical load, which is also known as the buckling load. Most of the columns of the frames do not reach the buckling load at the same time, so the axial force of many columns in braced frames during buckling of a particular column is different from their own buckling load. The most common method of determining the critical load of columns is to use the concept of effective length factor. In this research, an attempt has been made to obtain the critical load of the frames using a new analytical method. Various research has been conducted on the effective length factor and critical load. Some of the relevant studies are reviewed in this section.

کلیدواژه‌ها [English]

  • Gabled frame
  • Critical load
  • Thin-walled sections
  • Variable moment of inertia
  • Axial force
Abdelrahman AHA, Chen L, Liu SW, Ziemian RD, “Timoshenko line-element for stability analysis of tapered I-section steel members considering warping effects”, Thin-Walled Structures, 2022, 175, 109198. https://doi.org/10.1016/j.tws.2022.109198
Al-Lebban YF, “Geometric nonlinear dynamic analysis of tapered steel members”, Canadian Journal of Civil Engineering, 2020, 48 (6), 594-603. https://doi.org/10.1139/cjce-2019-0490
Aristozabal-Ochoa JD, “K-factor for Columns in any Type of Construction Nonparadoxial Approach”, Journal of Structral Engineering, ASCE, 1994, 120 (4), 1272-1290. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:4(1272)
Aristizabal-Ochoa JD, “Slope-deflection equations for stability and second-order analysis of Timoshenho beam-column structures with semi-rigid connections”, Engineering Structures, 2008, 30 (9), 2517-2527. https://doi.org/10.1016/j.engstruct.2008.02.007
Bai R, Hajjar JF, Liu SW, Chan, “A mixed-field timoshenko beam-column element for direct analysis of tapered I-sections members”, Journal of Constructional Steel Research, 2020, 172, 106157. https://doi.org/10.1016/j.jcsr.2020.106157
Ermopoulos JC, “Equivalent buckling length of non-uniform members”, Journal of Construction of Steel Research, 1997, 42 (2), 141-158. https://doi.org/10.1016/S0143-974X(97)00010-2
Quan C, Kucukler M, Gardner L, “Design of web-tapered steel I-section members by second-order inelastic analysis with strain limits”, Engineering Structures, 2020, 224, 111242. https://doi.org/10.1016/j.engstruct.2020.111242
Rahgozar R, Malekinejad M, Jahanshahi MR, “Free vibration analysis of coupled shear walls with axial force effects”, The IES Journal Part A: Civil & Structural Engineering, 2011, 4 (4), 224-231. http://dx.doi.org/10.1080/19373260.2011.615493
Johnson BG, “Structural stability research council, guide to stability design criteria for metal structures”, John Wiley & Sons, Inc., New York, 1976.
Vigrin LN, Planut RH, “Post buckling and vibration of linearity and softening column under self-weight”, International Journal of Solids and Structures, 2004, 41 (18-19), 4989-5001. https://doi.org/10.1016/j.ijsolstr.2004.03.023
Saffari H, Rahgozar R, Jahanshahi R, “An efficient method for computation of effective length factor of columns in a steel gabled frame with tapered members”, Journal of Constructional Steel Research, 2008, 64 (4), 400-406. https://doi.org/10.1016/j.jcsr.2007.09.001
Saka, MP, “Optimum design of steel frames with taperd members”, Computers and Structures, 1997, 63 (4), 797-811. https://doi.org/10.1016/S0045-7949(96)00074-0
Salama A, Atif A, Eraky A, Samir R, “Optimal design of steel gable frames with tapered members using Enhanced Crystal Structure Algorithm (ECryStAl)”, Structures, 2023, 50, 1742-1751. https://doi.org/10.1016/j.istruc.2023.03.019