پارامترهای مؤثر بر تنش انحرافی و سختی ماسه بهسازی شده تحت القاء رسوب کربنات کلسیم

نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 گروه مهندسی عمران، واحد لنگرود، دانشگاه آزاد اسلامی، لنگرود

2 گروه مهندسی عمران، واحد قزوین، دانشگاه آزاد اسلامی، قزوین

3 گروه مهندسی عمران، مدیریت ساخت، واحد قزوین، دانشگاه آزاد اسلامی، قزوین

4 گروه مهندسی عمران، واحد رودسر و املش، دانشگاه آزاد اسلامی، رودسر

10.22034/ceej.2025.62581.2398

چکیده

با افزایش جمعیت و رشد شهرنشینی، یکی از چالش ­های مهندسان ژئوتکنیک دسترسی به زمین­ه ای با ظرفیت باربری مناسب می ­باشد. تاکنون تکنیک‌های مختلفی مثل تراکم، تزریق و غیره، جهت بهسازی خاک به ­کار گرفته شده است. اخیراً روش‌های نوآورانه و دوستدار محیط زیست مانند بهسازی تحت القای رسوب کربنات کلسیم، توسعه یافته است که تحقیق در خصوص عوامل مؤثر بر بهبود، افزایش کارایی و کاهش هزینه­ های آن را ضروری می ­سازد. در این پژوهش، به بررسی تأثیر مولاریته محلول سیمانتاسیون، چگالی اپتیکی باکتری و زمان عمل ­آوری نمونه بر رفتار تنش- کرنش و تغییرات سختی ماسه بهسازی شده بیولوژیکی، توسط آزمایش سه­ محوری فشاری تحکیم یافته زهکشی نشده پرداخته شد. خاک مورد استفاده از نوع ماسه بد دانه­ بندی شده و از منطقه کوهین استان قزوین بوده که برای بهسازی آن از باکتری اسپروسارسینا (Sporosarcina pasteurii) پاستوری جهت تسریع واکنش و تولید رسوب، استفاده گردید. همچنین جهت جلوگیری از مسدودشدگی و کنترل توزیع یکنواخت رسوب، از روش تزریق چهارفازی استفاده شد. منحنی ­های تغییرات تنش انحرافی در برابر کرنش محوری نشان داد که مولاریته محلول سیمانتاسیون (Cementation solution molarity) با افزایش 45 درصدی تنش انحرافی، بیشترین تأثیر را بر رفتار تنش- کرنش ماسه بهسازی شده داشته است و زمان عمل­ آوری نمونه و چگالی اپتیکی باکتری، دارای تأثیر کمتری در روند بهسازی بیولوژیکی بوده ­اند. از سوی دیگر، برای ماسه بهسازی شده با سطوح مولاریته و چگالی اپتیکی پایین، افزایش چندانی در تنش انحرافی نسبت به قبل از بهسازی حاصل نگردید. پس از بهسازی بیولوژیکی ماسه، سختی ثانویه (Esec) و سختی معادل ۵۰ درصد تنش انحرافی حداکثر (E50)، در حدود 5/1 تا 2 برابر افزایش یافت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Effective Parameters on Deviator Stress and Stiffness of Treated Sands by Microbial Induced Calcite Precipitation

نویسندگان [English]

  • Seyed Abdollah Ekramirad 1
  • Mohammad Azadi 2
  • Naser Shamskia 3
  • Bagher Heidarpour, 4
1 Department of Civil Engineering, Langarud Branch, Islamic Azad University, Langarud, Iran
2 Department of Civil Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
3 Department of Civil Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
4 Department of Civil Engineering, Roudsar and Amlash Branch, Islamic Azad University, Roudsar, Iran
چکیده [English]

Given the population growth, one of the challenges facing engineers in the construction field is access to land with suitable bearing capacity. Therefore, the lack of access toquality land compels geotechnical engineers to enhance the mechanical parameters of soil using various improvement methods. To address these issues, research into new improvement methods such as microbial induced calcite precipitation (MICP) has expanded. Research on the parameters influencing the efficiency of the method and the development of various biological improvement techniques has continued. For instance, Harkes et al. (2010) investigated two-phase injection to prevent the accumulation and deposition of precipitate at the injection point. Al Qabany et al. (2012) evaluated the effect of cementation solution concentration and retention time on the efficiency of biological improvement methods under constant optical density conditions. Additionally, DeJong and Montoya (2015) examined the effect of cementation degree on the stress-strain behavior of sand in CU triaxial tests. In this study, the impact of the molarity of the cementation solution, bacterial optical density, and curing time on the stress-strain behavior and deformation parameters of sand improved through microbial induced calcite precipitation will be investigated. For each parameter influencing the improvement process, 17 samples were obtained based on experimental design using Design Expert ver. 11.0.3.0 software. After preparation, the samples were subjected to consolidated undrained (CU) triaxial compression tests. The results from the triaxial tests were then analyzed through stress-strain curves and stiffness.

کلیدواژه‌ها [English]

  • Biological improvement
  • Cementation solution molarity
  • Optical density
  • Curing time
  • Deviator stress
  • Stiffness
Al Qabany A, Soga K, Santamarina C, “Factors affecting efficiency of microbially induced calcite precipitation”, Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138 (8), 992-1001. https://doi.org/10.1061/(ASCE)GT. 1943-5606.0000666
Behzadipour H, Sadrekarimi A, “Effects of microbially induced calcite precipitation on static liquefaction behavior of a gold tailings sand”, Biogeotechnics, 2024, 100097. https://doi.org/10.1016/j.bgtech.2024.100097
Cheng L, Kobayashi T, Shahin MA, “Microbially induced calcite precipitation for production of “bio-bricks” treated at partial saturation condition”, Construction and Building Materials, 2020, 231, 117095. https://doi.org/10.1016/j.conbuildmat. 2019.117095
DeJong JT, Fritzges MB, Nüsslein K, “Microbially induced cementation to control sand response to undrained shear”, Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132 (11), 1381-1392. https://doi.org/10.1061/(ASCE) 1090-0241(2006)132:11(1381)
DeJong JT, Mortensen BM, Martinez BC, Nelson DC, “Bio-mediated soil improvement”, Ecological Engineering, 2010, 36 (2), 197-210. https://doi.org/10.1016/j.ecoleng.2008.12.029
Ekramirad SA, Azadi M, Shamskia N, “The effective parameters on the behaviour of treated sands by microbial-induced calcite precipitation under undrained triaxial test”, Archives of Mining Sciences, 2023, 55-69. https://doi.org/10.24425/ams.2023.144317
Feng, K, Montoya BM, “Influence of confinement and cementation level on the behavior of microbial-induced calcite precipitated sands under monotonic drained loading”, Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142 (1), 1-9. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001379
Han Z, Cheng X, Ma Q, “An experimental study on dynamic response for MICP strengthening liquefiable sands”, Earthquake Engineering and Engineering Vibration, 2016, 15 (4), 673-679. https://doi.org/10.1007/s11803-016-0357-6
Harkes MP, Van Paassen LA, Booster JL, Whiffin VS, van Loosdrecht MCM, “Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement”, Ecological Engineering, 2010, 36 (2), 112-117. https://doi.org/10.1016/j.ecoleng.2009.01.004
Karol RH, “Chemical Grouting and Soil Stabilization”, Revised and Expanded, 2003, 12, Crc Press. https://doi.org/10.1201/9780203911815
Lin H, Suleiman MT, Brown DG, Kavazanjian JrE, “Mechanical behavior of sands treated by microbially induced carbonate precipitation”, Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142 (2), 1-13. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001383
Madigan MT, Brock TD, Martinko JM, Parker J, “Brock biology of microorganisms”, Upper Saddle River (NJ): Prentice-Hall, 2003.
Montoya BM, DeJong JT, “Stress-strain behavior of sands cemented by microbially induced calcite precipitation”, Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141 (6), 4015019. https://doi.org/10.1061/(ASCE)GT.1943 -5606.0001302
Nafisi A, Liu Q, Montoya BM, “Effect of stress path on the shear response of bio-cemented sands”, Acta Geotechnica, 2021, 16, 3239-3251.https://doi.org/10.1007/s11440-021-01286-7
Prajapati NK, Agnihotri AK, Basak N, “Microbial induced calcite precipitation (MICP) a sustainable technique for stabilization of soil: A review”, Materials Today: Proceedings, 2023.https://doi.org/10.1016/ j.matpr .2023.07.303
Qu J, Li G, Ma B, Liu J, Zhang J, Liu X, Zhang Y, “Experimental study on the wind erosion resistance of aeolian sand solidified by microbially induced calcite precipitation (MICP)”, Materials, 2024, 17 (6), 1270. https://doi.org/10.3390/ma17061270
Rong H, Qian CX, Li L, “Study on microstructure and properties of sandstone cemented by microbe cement”, Construction and Building Materials, 2012, 36, 687-694. https://doi.org/10.1016/j.conbuildmat.2012.06.063
Tang Q, Tian A, Ling C, Huang Y, Gu F, “Physical and mechanical properties of recycled aggregates modified by microbially induced calcium carbonate precipitation”, Journal of Cleaner Production, 2023, 382, 135409. https://doi.org/10.1016/j.jclepro.2022.135409
Van Paassen LA, “Biogrout, ground improvement by microbial induced carbonate precipitation”, University of Delf, Dissertation, 2009.
Wang X, Li C, Fan W, Li H, “Reduction of brittleness of fine sandy soil biocemented by microbial-induced calcite precipitation”, Geomicrobiology Journal, 2022, 39 (2), 135-147. https://doi.org/10.1080/01490451.2021.2019858
Wang X, Bhukya PK, Arnepalli DN, Chen S, “Coupled multiphysical model for investigation of influence factors in the application of microbially induced calcite precipitation”, Journal of Rock Mechanics and Geotechnical Engineering, 2024,16 (6), 2232-2249. https://doi.org/10.1016/j.jrmge.2024.03.007
Wen K, Li Y, Liu S, Bu C, Li L, “Development of an improved immersing method to enhance microbial induced calcite precipitation treated sandy soil through multiple treatments in low cementation media concentration”, Geotechnical and Geological Engineering, 2019, 37 (2), 1015-1027. https://doi.org/10.1007/s10706-018-0669-6
Whiffin VS, “Microbial CaCO3 precipitation for the production of biocement”, Doctoral Dissertation, Murdoch University, 2004.
Zhang YS, Liu Y, Sun XD, Zeng W, Xing HP, Lin JZ, Yu L, “Application of microbially induced calcium carbonate precipitation (MICP) technique in concrete crack repair: A review”, Construction and Building Materials, 2024, 411, 134313. https://doi.org/10.1016/j.conbuildmat.2023.134313