پیش بینی طول عمر مفید و ارزیابی چرخه حیات بتن‌های پوزولانی

نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه پیام نور تبریز و مدرس گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی، واحد تبریز

2 دانشکده معماری و هنر، دانشگاه آزاد اسلامی، واحد تبریز

3 گروه مهندسی عمران، دانشکده مهندسی و علوم طبیعی، دانشگاه آنتالیا بیلیم، آنتالیا، ترکیه

10.22034/ceej.2024.61027.2338

چکیده

امروزه، الزامات مربوط به حفظ محیط‌زیست و میل به توسعه پایدار سبب شده است تا اغلب محققین علوم مواد، شیمی و محیط‌زیست و همچنین مهندسان عمران و معماری درصدد باشند تا در ساخت بتن و سازه‌های بتنی از مواد پسماندی استفاده کنند. یکی از مهم­ترین مسائل زیست‌محیطی سازه­ های بتنی مصرف سیمان می‌باشد. افزایش دمای کره زمین و افزایش غلظت گازهای گلخانه‌ای، محققان را بر آن داشته تا به­ منظور کاهش سمیان مصرفی و ردّ‌پای کربن ناشی از تولید بتن، از پرکننده‌ها و افزودنی‌های بتن با استفاده از مواد جدید نظیر پلیمرها و یا پوزولان‌ها، به ­عنوان گزینه زیست­ محیطی اقدام نمایند. هدف اصلی این مقاله معرفی بتن دوستدار محیط‌ زیست با استفاده از پوزولان‌ها (سرباره، دوده سیلیس و خاکستر بادی) می‌باشد. بدین­ منظور، آزمایش‌های متفاوتی با چهار طرح اختلاط متفاوت انجام گرفت و پارامترهای گوناگونی از جمله طول عمر مفید بتن و سازگاری با محیط‌زیست با استفاده از نرم‌افزار Life-365 محاسبه گردید. نتایج حاکی از آن است که استفاده از پوزولان‌ها اگر به ­مقدار 40% وزن سیمان باشد به ­طوری که مقدار دوده 15% و سرباره 25% باشد، بهترین عملکرد را از نظر سازگاری با محیط‌ زیست خواهد داشت. در این صورت نفوذپذیری کاهش و طول عمر بتن در محیط‌های خورنده کلراید افزایش یافته و در نتیجه از رسیدن یون کلر به سطح میلگرد به­ مقدار زیادی جلوگیری می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Service Life Prediction and Life Cycle Assessment of Pozzolanic Concretes

نویسندگان [English]

  • Shahrokh Shoaei 1
  • Armaghan Shoaei 2
  • Ali Danandeh Mehr 3
1 Department of Civil Engineering, Payame Noor University, Tabriz Branch, Iran & Civil Engineering Department, Faculty of Engineering, Islamic Azad University, Tabriz Branch, Iran
2 Architecture and Art Faculty, Islamic Azad University, Tabriz Branch, Iran
3 Civil Engineering Department, Antalya Bilim University, Turkey
چکیده [English]

Due to the increase in urbanization and the rapid growth of the construction industry around the world, cement has become one of the most widely used construction materials. It has been widely reported that the production and consumption of Portland cement is one of the main factors of global warming and greenhouse gas emissions. Recent studies have shown that cement production is responsible for 12-15% of total energy consumption in industry and approximately 5% of carbon dioxide emissions from human activity. The Portland Cement Association showed that the production of one ton of cement produces 0.9 tons of carbon dioxide gas. Reducing the harmful effects of rapid consumption of cement, which has an adverse effect on global warming, is an alarming concern.
In a study conducted by Pakmezgi et al (2004), the effects of pozzolan on the properties of concrete with different types and volumes of pozzolan were investigated. In this study, the effect of a natural pozzolan on concrete properties was investigated. For this purpose, concrete mix was produced in three series with control mixes with cement content of 300, 350 and 400kg. These control mixes were modified to have a combination of 250, 300 and 350 kg of cement and 40, 50, 75 and 100kg of pozzolan for 1 cubic meter of concrete. Pozzolan efficiency was obtained by using Bloomy and Fert resistance equations on 28-day concretes. The maximum amount of pozzolan with optimal efficiency was determined. This study shows that the efficiency obtained from each resistance equation is similar and these values decrease with increasing pozzolan-cement ratio.

کلیدواژه‌ها [English]

  • Concrete
  • Pozzolans
  • Environment
  • Life cycle
  • Service life
ACI Committee 232.2R-03; “Use of Fly Ash in Concrete”, American Concrete Institute, 1993.
Athibaranan S, Karthikeyan J, Rawat S, “Investigation on service life prediction models of reinforced concrete structures exposed to chloride laden environment”, Journal of Building Pathology and Rehabilitation 2022, 7, 16. https://doi.org/10.1007/s41024-021-00149-8
Benhelal E, Zahedi G, Shamsaei E, Bahadori A, “Global strategies and potentials to curb CO2 emissions in cement industry”, Journal of Cleaner Production, 2013, 51, 142-161.
Bentz EC, “Probabilistic modeling of service life for structures subjected to chlorides”, Materials Journal, 2003100 (5), 391-397.
Dehghan Anari MM, Yousefi E, Aghapour M, “Steel slag and its applications in cement industry, concrete technology and sustainable development”, 11th International Conference on Materials & Metallurgical Engineering (iMat2022), Tehran, Iran. https://civilica.com/doc/1622205
Detwiler RJ, Bhatty JI, Bhattacharja S, “Supplementary cementing materials for use in blended cements; portland cement association”, Research and Development Bulletin RD112T. 1998.
Ehlen MA, Thomas MD, Bentz EC, “Life-365 service life prediction mode lTM version 2.0. Concrete international”, 2009, 31 (5), 41-46.
Ghrici M, Kenai S, Said-Mansour M, “Mechanical properties and durability of mortar and concrete containing natural pozzolana and limestone blended cements”, Cement & Concrete Composites 2007, 29 (7), 542-549.
Habibi A, Ahmadvand H, “Development of an Analytical Method for Optimization of High Strength Self-Compacting Concrete Mix Design Containing Fly Ash”, Ferdowsi Civil Engineering Journal, 2018, 31 (2), 101-117. 10.22067/civil.v31i2.5779
https://doi.org/10.1016/j.cemconcomp.2007.04.009
https://doi.org/10.1016/j.cemconres.2004.02.008
https://doi.org/10.1016/j.conbuildmat.2020.120172
https://doi.org/10.1016/j.enbuild.2017.12.011
https://doi.org/10.1016/j.jclepro.2012.10.04
https://doi.org/10.1139/L10-112
https://doi.org/10.3390/en15072708
Ige, OE, Olanrewaju, OA, Duffy, KJ, Collins, OC, “Environmental impact analysis of Portland cement (CEM1) using the midpoint method”, Energies, 2022, 15 (7), 2708.
Ince C, Derogar S, Michelitsch TM, “Influence of supplementary cementitious materials on water transport kinetics and mechanical properties of hydrated lime and cement mortars”, Materiales de Construcción, 2015, 65 (318), e056-e056. https://doi.org/10.3989/mc.2015.05214
Khan MI, Alhozaimy AM, “Properties of natural pozzolan and its potential utilization in environmental friendly concrete”, Canadian Journal of Civil Engineering, 2011, 38 (1), 71-78.
Kjellsen KO, Wallevik OH, Hallgren M, “On the compressive strength development of high-performance concrete and paste-effect of silica fume”, Materials and Structures, 1999, 32, 63-69.
Life-365, Service-Life Prediction Model, Version 2.2.3, 2020. Silica Fume Association, Sierra Lane, VA, US 2020.
Maghsoudi AA, Fazeli A, Negarizadeh A, “Investigation and comparison of mechanical properties of concretes containing and without pozzolan”, Modares Technical and Engineering, 2002, 8, 65-79. SID. https://sid.ir/paper/420578/fa
Meyer C, “The greening of the concrete industry”, Cement and Concrete Composites, 2009, 31 (8), 601-605. https://doi.org/10.1016/j.cemconcomp.2008.12.010
Mouli M, Khelafi H, “Performance characteristics of lightweight aggregate concrete containing natural pozzolan”, Building and Environment, 2008, 43, 31-36. https://doi.org/10.1016/j.buildenv.2006.11.03
Nath P, Sarker PK, Biswas WK, “Effect of fly ash on the service life, carbon footprint and embodied energy of high strength concrete in the marine environment”, Energy and Buildings, 2018, 158, 1694-1702.
Pekmezci B, Akyüz S, “Optimum usage of a natural pozzolan for the maximum compressive strength of concrete”, Cement and Concrete Research, 2004, 34 (12), 2175-2179.
Tuutti K, “Corrosion of steel in concrete”, Swedish Cement and Concrete Research Institute, Report No. 4-8, 1982.
Uzal B, Turanli L, Mehta PK, “High-volume natural pozzolan concrete for structural applications”, ACI Materials Journal, 2007, 104, (5), 535.
Yahi N, Teymuri Mogoui M, “Use of slag as aggregate in the manufacture of high-strength concrete”, Sixth Annual National Conference of Iranian Concrete, 2014, Tehran. https://civilica.com/doc/316368
Yang C, Li L, Li J, “Service life of reinforced concrete seawalls suffering from chloride attack: theoretical modelling and analysis”, Construction and Building Materials, 2020, 263, 120-172.