برهم کنش مکانیکی مابین زمین لرزه های بزرگ بخش شرقی ایران

نوع مقاله : مقاله کامل پژوهشی

نویسنده

گروه نقشه برداری، دانشکده مهندسی عمران، دانشگاه تبریز

چکیده

آنالیز تغییرات تنش کولمب در عمق متوسط لرزه ­ای برای برآورد احتمال رخداد زمین ­لرزه در بسیاری از مناطق لرزه‌خیز به‌کار گرفته شده است. این مطالعات نشان می‌دهند که در اکثر موارد مکان رخداد زمین‌لرزه‌های بعدی متأثر از تغییرات تنش کولمب ناشی از زمین‌لرزه‌های قبلی در آن منطقه است. به‌منظور بررسی مکان احتمالی رخداد زمین‌لرزه‌های بزرگ، تغییرات تنش کولمب همالرزه­ای (Coseismic Coulomb Stress Changes) 24 زمین‌لرزه تاریخی و دستگاهی با بزرگای بیشتر از 5/5 در بخش شرقی ایران به ­ترتیب تاریخی محاسبه شد. بررسی برهم­کنش مکانیکی مابین زمین‌لرزه‌ها، ارتباط مکانی مابین آن­ها را در حدود 50 درصد از رویدادها نشان داد. همچنین به‌منظور آگاهی از این­ که در کدام قسمت از منطقه مورد مطالعه خطر لرزه‌ای بیشتر است، تغییرات تنش کولمب تجمعی هما‌لرزه­ای بر روی صفحات گسلی با هندسه بهینه محاسبه شد. نتایج این محاسبات مناطق پرخطر و محتمل برای زمین‌لرزه‌های بزرگ بعدی را نشان داد. این مناطق برای گسل ­های شیب­ لغز عبارتند از: قسمتی از گسل بالهر (Balher) در جنوب غربی گسیختگی زمین‌لرزه 1940، قسمت شمالی گسل فردوس در غرب گسیختگی زمین‌لرزه دوم 1968 و قسمت جنوبی گسل فردوس در غرب گسیختگی زمین‌لرزه 1947، قسمتی از گسل محمدآباد در جنوب گسیختگی زمین‌لرزه 1941، قسمت‌هایی از گسل طبس در شرق گسیختگی زمین‌لرزه 1978. برای گسل ­های امتداد لغز نیز این مناطق عبارتند از: بخشی از گسل درونه در شمال گسیختگی زمین‌لرزه دوم 1903، قسمت غربی گسل دشت بیاض در غرب گسیختگی زمین‌لرزه سوم 1979، گسل دوست‌آباد در جنوب گسیختگی زمین‌لرزه 1947، قسمت انتهایی گسل آبیز در جنوب گسیختگی زمین‌لرزه 1997، ابتدای گسل نایبند در جنوب گسیختگی زمین‌لرزه 1978.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Mechanical Interaction among Large Earthquakes in Eastern part of Iran

نویسنده [English]

  • Asghar Rastboud
Civil Engineering Faculty, University of Tabriz, Civil Engineering Faculty, University of Tabriz, Tabriz, Iran, Iran
چکیده [English]

     Human being has been faced with destructive phenomenon specially earthquake for a long time. Knowing about the time and area of major earthquake and aftershocks is so necessary to mitigate the damage of financial and life by warning the earthquake or aftershocks happen before it really happened. Maybe this day we can't predict the earthquake exactly but the study about the information of previous earthquakes can identify the potential land that have Earthquake Bloodbath and with this knowing in building construction we can mitigate the damage due to the earthquake.
     The tendency of rocks to fail in a brittle manner is thought to be a function of both shear and confining stresses, commonly formulated as the Coulomb failure criterion. Here we explore how changes in Coulomb conditions associated with one or more earthquakes may trigger subsequent events.
      Study of Stress changes in earth's crust is useful for the predicting earthquakes. Analysis of Coulomb stress changes has been used in many seismic areas. These researches showed that the area and the speed of next earthquake will affect by the static stress changes which are the result of historical earthquake in this area.

کلیدواژه‌ها [English]

  • Coulomb Stress Changes
  • Mechanical Interaction
  • Active Fault
  • Earthquake
  • East Iran
جعفری حاجتی ف، آق آتابای م، "بررسی پدیده برهم ­کنش بین زوج زمین ­لرزه 21 مرداد 1391 اهر- ورزقان و توزیع مکانی پس ­لرزه­ ها"، مجله ژئوفیزیک ایران، 1392، 7 (3)، 13-24.
حسامی خ، جمالی ف، طبسی ه، "نقشه گسل‌های فعال ایران"، پژوهشگاه بین‌المللی زلزله‌شناسی و مهندسی زلزله، 1382.
زارعی س، خطیب م م، زارع م، موسوی س م، "اثر تغییرات تنش کولمب ناشی از زمین­ لرزه 31 اوت 1968 دشت بیاض در چکانش رخدادهای آتی"، فصل­نامه علمی- پژوهشی علوم و مهندسی زلزله، 1396 4 (3)، 17-32.
سرخوندی س، زعفرانی ح، قلندرزاده ع، "بررسی تأثیر تغییرات تنش کولمب بر مدل­ های زمان وابسته در شرق ایران"، فصل­نامه علمی- پژوهشی علوم و مهندسی زلزله، 1394، 2 (4)، 1-10.
نوری ب، هاشمی س ن، ملکی آسایش ب، "مطالعه تغییرات نرخ لرزه ­خیزی و تنش کولمب مرتبط با زمین ­لرزه 9 آوریل 2013 کاکی-شنبه (3/6=MW) و توزیع مکانی پس­ لرزه­ ها"، فیزیک زمین و فضا، ۱۳۹۶، 43 (2)، 339-353.
https://doi.10.22059/jesphys.2017.61670
ملکی آسایش ب، حمزه ­لو ح، "تغییرات تنش کولمب حاصل از زمین لرزه ­های ریگان و توزیع پس ­لرزه­ ها"، فصل­نامه علمی- پژوهشی علوم و مهندسی زلزله، 1394، 2 (2)، 1-10.
Ahadov B, Jin S, “Effects of Coulomb stress change on Mw ≥ 6 earthquakes in the Caucasus”, Physics of the Earth and Planetary Interiors, 2019, 297, 1-12. https://doi.org/10.1016/j.pepi.2019.106326.
Aki K, Richards PG, “Quantitative Seismology”, University Science Books, ISBN: 0935702962, 700 pp, 2002.
Ali ST, Freed AM, Calais E, Manaker DM, McCann WR, “Coulomb stress evolution in northeastern Caribbean over the past 250 years due to coseismic, postseismic and interseismic deformation”, Geophysical Journal International, 2008, 174, 904-918. https://doi.org/10.1111/j.1365-246X.2008.03634.x.
Ambraseys N, Melville C, “A History of Persian Earthquakes. Cambridge University Press, Cambridge, 1982.
Berberian M, “Natural hazards and the first earthquake catalogue of Iran”, 1, Historical hazards in Iran prior to 1900, International Institute of Earthquake Engineering and Seismology (IIEES), 1994, 603 pp.
Bing Y, Shinji T, Aiming L, “Coulomb Stress evolution history as implication on the pattern of strong earthquakes along the xianshuihe-xiaojiang fault system”, China, Journal of Earth Science, 2016, 29, 2, 427-440. https://doi.org/10.1007/s12583-018-0840-2.
Gahalaut VK, “Coulomb stress change due to 2005 Kashmir earthquake and implications for future seismic hazards”, Journal of Seismology, 2009, 13 (3), 379-386. https://doi.org/10.1007/s10950-009-9169-8.
Ganas A, Sokos E, Agalos A, Leontakianakos G, Pavlides S, “Coulomb stress triggering of earthquakes along the Atalanti Fault, central Greece: Two April 1894 M6+ events and stress change patterns”, Tectonophysics 2006, 420, 357-369.
        https://doi.org/10.1016/j.tecto.2006.03.028.
Ghimire S, Katsumata K, Kasahara M, “Spatio-temporal evolution of Coulomb stress in the Pacific slab inverted from the seismicity rate change and its tectonic interpretation in Hokkaido, Northern Japan”, Tectonophysics, 2008, 455, 25-42. https://doi.org/10.1016/j.tecto.2008.04.017.
Görgün E, “Source characteristics and Coulomb stress change of the 19 May 2011 Mw 6.0 Simav-Kütahya earthquake”, 2014, Turkey, Journal of Asian Earth Sciences, 87, 79-88.
        https://doi.org/10.1016/j.jseaes.2014.02.016.
Harris RA, Simpson RW, “Changes in static stress on southern California faults after the 1992 Landers earthquake”, 1992, Nature 360, 251-254. https://doi.org/10.1038/360251a0.
Hartzell S, Mendoza C, “Application of an iterative least-squares waveform inversion of strong-motion and teleseismic records to the 1978 Tabas, Iran, earthquake”, Bulletin of the Seismological Society of America, 1991, 81 (2), 305-331. https://doi.org/10.1785/BSSA0810020305.
Hessami K, Jamali F, Tabassi H, “Major active faults of Iran”, IIEES, Tehran, 2003.
Ishibe T, Satake K, Sakai S, Shimazaki K, Tsuruoka H, Yokota Y, Nakagawa S, Hirata N, “Correlation between Coulomb stress imparted by the 2011 Tohoku-Oki earthquake and seismicity rate change in Kanto”, Japan, Geophysical Journal International, 2015, 201, 112-134. https://doi.org/10.1093/gji/ggv001.
Jackson J, Priestley K, Allen M, Berberian M, “Active tectonics of the South Caspian Basin”, Geophysical Journal International, 2002, 148 (2), 214-245. https://doi.org/10.1046/j.1365-246X.2002.01588.x.
Jackson JA, Haines AJ, Holt WE, “The accommodation of Arabia-Eurasia plate convergence in Iran”, Journal of Geophysical Research, 1995, 100, 15205-15209, https://doi.org/10.1029/95JB01294.
King GCP, Stein RS, Lin J, “Static Stress Changes and the Triggering of earthqukes”, Bulletin of the Seismological Society of America, 1994, 84 (3), 935-953, https://doi.org/10.1785/BSSA0840030935.
Kusumawati D, Sahara DP, Nugraha AD, Puspito NT, “Sensitivity of static Coulomb stress change in relation to source fault geometry and regional stress magnitude: case study of the 2016 Pidie Jaya”, Aceh earthquake (Mw=6.5), Indonesia, Journal of Seismology, 2019. https://doi.org/10.1007/s10950-019-09878-3.
Mahesh N, Shrivastava and Reddy CD, “The Mw 8.6 Indian Ocean Earthquake on 11 April 2012: Coseismic Displacement, Coulomb Stress Change and Aftershocks Pattern”, Journal of Geological Society of India, 2013, 81, 813-820. https://doi.org/10.1007/s12594-013-0106-7.
Marchandon M, Vergnolle M, Cavalié O, “Fault interactions in a complex fault system: insight from the 1936-1997 NE Lut earthquake sequence”, Geophysical Journal International, 2021, 224 (2), 1157-1173. https://doi.org/10.1093/gji/ggaa451.
Mirzaei N, Gao M, Chen YT, “Evaluation of uncertainty of earthquake parameters for the purpose of seismic zoning of Iran”, Earthquake Research in China, 1997, 11, 197-212.
Nalbant SS, Baraka AA, Alptekin O, “Failure Stress Change Caused by the 1992 Erzincan Earthquake (Ms=6.8)”, Geophysical research letters, 1996, 23 (13), 1561-1564. https://doi.org/10.1029/96GL01323.
Nowroozi AA, “Empirical relations between magnitudes and fault parameters for earthquakes in Iran”, Bulletin of the Seismological Society of America, 1985, 75 (5), 1327-1338. https://doi.org/10.1785/BSSA0750051327.
Okada Y, “Surface deformation due to shear and tensile faults in a half-space”, Bulletin of the Seismological Society of America, 1985, 75, 4, 1135-1154. https://doi.org/10.1785/BSSA0750041135.
Sarkarinejad K, Ansari S, “The Coulomb Stress Changes and Seismicity Rate due to the 1990 Mw 7.3 Rudbar Earthquake”, Bulletin of the Seismological Society of America, 2014, 104, 6, 1-10.
        https://doi.org/10.1785/0120130314.
Segall P, “Earthquake and volcano deformation”, Princeton University press, Stanford University Press, ISBN: 9780691133027, 458, 2010.
Serpelloni E, Anderlini L, Belardinelli ME, “Fault geometry, coseismic-slip distribution and Coulomb stress change associated with the 2009 April 6, Mw 6.3, L’Aquila earthquake from inversion of GPS displacements”, Geophysical Journal International, 2012, 188, 473-489. https://doi.org/10.1111/j.1365-246X.2011.05279.x.
Shan B, Xiong Xiong X, Zheng Y, Wei S, Wen Y, Jin B, Ge C, “The co-seismic Coulomb stress change and expected seismicity rate caused by 14 April 2010 Ms=7.1 Yushu, China, earthquake”, Tectonophysics, 2011, 510, 345-353. https://doi.org/10.1016/j.tecto.2011.08.003.
Smith B, Sandwell D, “Coulomb stress accumulation along the San Andreas Fault system”, Journal of Geophysical Research, 2003, 108, B6, 2296.
        https://doi.org/10.1029/2002JB002136.
Smith BR, Sandwell DT, “A model of the earthquake cycle along the San Andreas Fault System for the past 1000 years”, Journal of Geophysical Research, 2006, 111, B01405. https://doi.org/10.1029/2005JB003703.
Stein RS, Barka AA, Dieterich JH, “Progressive failure on the north Anatolian fault since 1939 by earthquake stress triggering”, Geophysical Journal International, 1997, 128, 594-604.
Sudhaus H, Jonsson S, “Source model for the 1997 Zirkuh earthquake (MW = 7.2) in Iran derived from JERS and ERS InSAR observations”, Geophysical Journal International, 2011, 185, 676-692.
Toda SRS, Stein K, Richards-Dringer S, Bozkurt, “Forecasting the evolution of seismicity in southern California: Animations built on earthquake stress transfer”, Journal of Geophysical Research, 2005, 110, B05S16. https://doi.org/10.1029/2004JB003415.
Vavrycuk V, “Iterative joint inversion for stress and fault orientations from focal mechanisms”, Geophysical Journal International, 2014, 199, 69-77.
        https://doi.org/10.1093/gji/ggu224.
Verdecchia A, Carena S, “Coulomb stress evolution in a diffuse plate boundary: 1400 years of earthquakes in eastern California and western Nevada, USA”, Tectonics, 2016, 35, 8, 1793-1811.
Wang J, Xu C, Freymueller JT, Li Z, Shen W, “Sensitivity of Coulomb stress change to the parameters of the Coulomb failure model: A case study using the 2008 Mw 7.9 Wenchuan earthquake”, Journal of Geophysical Research, Solid Earth, 119.
        https://doi.org/10.1002/2012JB009860.
Wells DL, Coppersmith KJ, “New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement”, Bulletin of the Seismological Society of America, 1994, 84, 974-1002. https://doi.org/10.1785/BSSA0840040974.
Xu Q, Chen Q, Zhao J, Liu X, Yang Y, Zhang Y, Liu G, “Sequential modeling of the 2016 Central Italy earthquake cluster using multi-source satellite observations and quantitative assessment of Coulomb stress change”, Geophysical Journal International, 2020, 221 (1),451-466.
        https://doi.org/10.1093/gji/ggaa036.
Yang Y, Chen Q, Xu Q, Liu G, Hu JC, “Source model and Coulomb stress change of the 2015 Mw 7.8 Gorkha earthquake determined from improved inversion of geodetic surface deformation observations”, Journal of Geodesy, 2018. https://doi.org/10.1007/s00190-018-1164-9.
Yamaji A, “The multiple inverse method: a new technique to separate stresses from heterogeneous fault-slip data”, Journal of Structural Geology, 2000, 22, 7, 441-452. https://doi.org/10.1016/S0191-8141(99)00163-7.
Yamaji A, Sato K, “Distances for the solutions of stress tensor inversion in relation to misfit angles that accompany the solutions”, Geophysical Journal International, 2006, 167, 2, 933-942. https://doi.org/10.1111/j.1365-246X.2006.03188.x.
Yousefi-Bavil A, Moayyed M, “Paleo and modern stress regimes of central North Tabriz Fault”, Eastern Azerbaijan Province, NW Iran”, Journal of Earth Science, 2015, 26, 3, 361-372.
        https://doi.org/10.1007/s12583-015-0549-4.
Zarei S, Khatib MM, Zare M, Mousavi SM, “Evaluation of seismicity triggering: insights from the coulomb static stress changes after the 30 August 1968 Dasht-e-Bayaz Earthquake (Mw=7.1), Eastern Iran”, ISSN 0016-8521, Geotectonics, 2019, 53, 5, 601-616. https://doi.org/10.1134/S0016852119050078.
Zarifi Z, Nilfouroushan F, Raeesi M, “Crustal stress map of iran: insight from seismic and geodetic computations”, 2013. https://doi.org/10.1007/s00024-013-0711-9.
Zhan Z, Jin B, Wei S, Graves RW, “Coulomb stress change sensitivity due to variability in mainshock source models and receiving fault parameters: a case study of the 2010-2011 Christchurch, New Zealand, earthquakes”, Seismological Research Letters, 2011, 82 (6), 800-814. https://doi.org/10.1785/gssrl.82.6.800.
Zhang QW, Zhang PZ, Wang YP, Ellis MA, “Earthquake triggering and delaying caused by fault interaction on Xianshuihe fault belt, southwestern China”, Acta Seismologica Sinica, 2003, 16 (2), 156-165. https://doi.org/10.1007/s11589-003-0018-5.
Zhou Z, Kusky TM, Tang CC, “Coulomb stress change pattern and aftershock distributions associated with a blind low-angle megathrust fault, Nepalese Himalaya”, Tectonophysics, 2019, 767, 1-10.
        https://doi.org/10.1016/j.tecto.2019.228161.