فشرده سازی داده‌های شتاب‌نگاری ثبت‌شده در ایران توسط آنالیز موجک

نوع مقاله : مقاله کامل پژوهشی

نویسندگان

گروه مهندسی عمران، دانشکده فنی، دانشگاه گیلان

چکیده

هدف از این تحقیق ارائه داده‌های شتاب‌نگاری ثبت‌ شده در ایران به‌صورت فشرده توسط موجک می‌باشد. با توجه به امکان فشرده‌سازی داده‌های لرزه‌ای و ارائه آن‌ها به‌صورت مجموع آثار تعدادی از موجک‌ها و اهمیتی که این موجک‌ها در شناخت طبیعت حرکت زمین و بسط الگوریتم‌های جدید جهت ساخت زلزله‌های مصنوعی دارند، در این مقاله فشرده‌سازی 806 رکورد سه مؤلفه‌ای حاصل از زلزله‌های رخ‌داده در ایران طی سال‌های 1975 تا 2013 با استفاده از تبدیل موجک سریع انجام‌گرفته است. فشرده‌سازی داده‌ها با استفاده از بسط سرعت حرکت زمین برحسب سری موجک‌های متعامد و متعاقباً بازسازی سیگنال اصلی توسط موجک‌هایی که دارای حداکثر انرژی می‌باشند صورت گرفته است. در این راستا از موجک کویفلت 5 که متعامد، هموار و تقریباً متقارن است جهت انجام تقریب‌های حاصل از بازسازی 1%، 2%، 4%، 6%، 8% و 12% از بیش­ترین ضرایب مربوط به بسط استفاده گردیده است. کارایی روش به­کار گرفته‌شده از طریق مقایسه تعدادی از شاخص‌های لرزه‌ای حاصل از سیگنال‌های اصلی و فشرده‌سازی شده و بررسی میزان خطاها مورد ارزیابی قرارگرفته است. شاخص‌های به­کار گرفته‌شده شامل انرژی ورودی زلزله، حداکثر توان ورودی زلزله و زمان خرابی نوسانگر غیرخطی می‌باشند. نتایج حاکی از میزان همبستگی بالا میان شاخص‌های حاصل از داده‌های اصلی و فشرده‌سازی شده با در نظر گرفتن تعداد کمی از موجک‌ها می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Iran Accelerograph Data Contraction Using Wavelet Analysis

نویسندگان [English]

  • Afshin Pourtaghi
  • Reza Saleh Jalali
Department of Civil Engineering, Faculty of Engineering, University of Guilan, Rasht, Iran
چکیده [English]

The main purpose of this paper is to find an approximation of Iran strong motion records by a relatively small number of pulses (i.e. wavelets in an orthogonal wavelet family) considering wavelet importance in introducing the nature of ground strong motion. The Coiflet 5 wavelet family is used, which is orthogonal, smooth and nearly symmetric. Such representation is obtained by the expansion of velocity in orthogonal wavelet series using the Fast Wavelet Transform, and approximation by only the largest energy terms in the series. The goodness of the approximation is examined. The efficiency of the procedure is assessed by comparison some seismic indices such as input seismic energy, peak power and nonlinear oscillator collapse time which are achieved from the main and contracted signals.

کلیدواژه‌ها [English]

  • Earthquake
  • Wavelet analysis
  • Energy
  • Power
  • Nonlinear seismic response
  • Collapse time
فدوی امیری م ر، سلیمانی ایوری س ع، حسن­پور ح، شامخی امیری م، "شبیه‌سازی شتاب‌نگاشت مصنوعی زلزله سازگار با طیف ساختگاه با استفاده از تحلیل سری‌های زمانی"، نشریه علمی- پژوهشی مهندسی سازه و ساخت، 1396، 4 (3)، شماره پیاپی 13، 80-68.
مرکز تحقیقات راه، مسکن و شهرسازی، 1394، http://www.bhrc.ac.ir.
موسوی خلخالی س ع، پورشاء م، افشین ح، چناقلو م ر، "معرفی یک روش مناسب برای ارزیابی سریع آسیب پذیری لرزه­ای ساختمان­های مسکونی در تبریز"، نشریه علمی- پژوهشی عمران و محیط زیست، انتشار آنلاین.
Daubechies I, “Ten lectures on wavelets”, Society for Industrial Application of Mathematics (SIAM), Philadelphia, Pennsylvania, 1992.
Jalali RS, Trifunac MD, “A note on strength-reduction factors for design of structures near earthquake faults”, Soil Dynamics and Earthquake Engineering, 2008, 28, 212-222.
Kaushik SVK, Gupta RC, George, “Wavelet-based generation of spatially correlated accelerograms”, Soil Dynamics and Earthquake Engineering, 2016, 87, 116-124.
Lee VW, Trifunac MD, “Automatic Digitization and Processing of Accelerograms Using PC”, Department of Civil Engineering, Report 90-03, Univ. Southern California, Los Angeles, California, 1990.
Li Y, Wang G, “Simulation and generation of spectrum-compatible ground motions based on wavelet packet method”, Soil Dynamics and Earthquake Engineering, 2016, 87, 44-51.
Luciano Telesca Vincenzo Lapenna Nikos Alexisb Multiresolution wavelet analysis of earthquakes Chaos, Solitons & Fractals Volume 22, Issue 3, November 2004, Pages 741-748.
Mallat SG, “Multiresolution approximations and wavelet orthonormal bases of L2 (R)”, Transactions of the American Mathematical Socity, 1989, 315, 69-87.
Todorovska MI, Meidani H, Trifunac MD, “Wavelet approximation of earthquake strong ground motion-goodness of fit for a database in terms of predicting nonlinear structural response”, Soil Dynamics and Earthquake Engineering, 2009, 29, 742-751.
Todorovska MI, Trifunac MD, “Earthquake damage detection in the Imperial County Services Building I: the data and time-frequency analysis”, Soil Dynamics and Earthquake Engineering, 2007, 27 (6), 564-76.
Todorovska MI, “Estimation of instantaneous frequency of signals using the continuous wavelet transform”, Department of Civil Engineering, Report CE01-07, University of Southern California, LosAngeles, CA, 2001.
Todorovska MI, Hao TY, “Information granulation and dimensionality reduction of seismic vibration monitoring data using orthonormal discrete wavelet transform for possible application to data mining”, Report CE 03-02, Department of Civil Engineering, University of Southern California, Los Angeles, CA, 2003.
Todorovska MI, Hao TY, “Information granulation and dimensionality reduction of seismic vibration monitoring data using orthonormal discrete wavelet transform for possible application to data mining”, Report CE 03-02, Department of Civil Engineering, University of Southern California, Los Angeles, CA, 2003
Vetterli M, Kovacˇ eJ, “Wavelets and sub-band coding “Upper Saddle River”, N J: Prentice-Hall PTR, 1995.
Misiti M, Misiti Y, Oppenheim G, Poggi JM, “Wavelet Toolbox User Guide For use in MATLAB”, the Math Works, Inc. 1997.