کاربرد الیاف پلیمری تایر بازیافتی در بهسازی مقاومت برشی ماسه بابلسر

نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 دانشکده مهندسی عمران و محیط‌زیست، دانشگاه صنعتی شیراز

2 دانشکده مهندسی عمران و محیط زیست، دانشگاه صنعتی شیراز

چکیده

بهسازی خاک ­های ضعیف در پروژه­ های عمرانی از جایگزینی آن­ها با خاک مناسب مقرون به­ صرفه ­تر بوده و در سال­ های اخیر موردتوجه پژوهشگران قرار گرفته است. بهسازی و تسلیح با استفاده از الیاف با توزیع تصادفی روشی ساده، مؤثر و ارزان برای بهبود رفتارهای مقاومتی و تغییرشکلی خاک ­ها می­ باشد. در کاربرد الیاف برای بهسازی خاک می­ توان از الیاف بازیافتی بهره گرفت که در این­ صورت، علاوه بر کاهش هزینه ­ها، راهکاری برای دفع مواد زائد نیز مهیا می ­شود. در این پژوهش، رفتارهای مقاومتی و تغییرشکلی ماسه بابلسر تسلیح شده با الیاف پلیمری تایر بازیافتی با استفاده از مجموعه­ ای از آزمون­ های برش مستقیم موردمطالعه قرار گرفته است. الیاف پلیمری تایر بازیافتی از فرآوری و بازیافت تایرهای (لاستیک­ های) مستعمل اتومبیل حاصل می­شود. در این مقاله، مخلوط­ های الیاف- ماسه با مقدار وزنی 2، 4 و 8% الیاف آماده شده و در تراکم­ های نسبی 35، 50، 65 و 80% در سه سربار عمودی 32، 57 و 107 کیلوپاسکال مورد آزمایش برش مستقیم قرار گرفته ­اند. نتایج تجربی حاصل نشان می ­دهد که ماسه مسلح شده با الیاف پلیمری تایر بازیافتی، در قیاس با ماسه مسلح نشده تمایل بیشتری به رفتار اتساعی نشان می­دهد و همچنین مقاومت برشی بالاتری را تجربه می­کند. ماسه مسلح شده با 8% الیاف، تا 25% افزایش مقاومت نشان می­دهد. این روش بهسازی خاک ماسه ­ای در کاربری­ های متنوعی همچون سازه­ های حائل و خاکریزها تا پایدارسازی زیراساس راه ­ها و بستر پی­ ها قابل به­ کارگیری است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Application of Recycled Tire Polymer Fibers for Shear Strength Improvement of Babolsar Sand

نویسندگان [English]

  • Mohammad Hassan Ghaedsharafi 1
  • Piltan Tabatabaie Shourijeh 2
1 Department of Civil and Environmental Engineering, Shiraz University of Technology, Iran
2 Department of Civil and Environmental Engineering, Shiraz University of Technology, Iran
چکیده [English]

In recent years soil reinforcement and improvement techniques have gained widespread applications in different aspects of geotechnical engineering. It is apparent that reinforcing/stabilizing a weak/problematic soil is more economical than replacing it with select fills. A contemporary method of soil reinforcement/ improvement is the application of fibers-natural or synthetic (polymeric) with random distribution within the soil (Hejazi et al. 2012). More recently, there has been a trend in utilization of recycled fibers for soil reinforcement/improvement purposes (Valipour et al. 2021). This treatment dwells on the application of Recycled Tire Polymer Fibers (RTPFs) for enhancing the shear strength of Babolsar sand.

کلیدواژه‌ها [English]

  • Soil improvement
  • Babolsar sand
  • Recycled Tire Polymer Fiber (RTPF)
  • Shear strength
  • Direct shear test
نورزاد ر، قریشی زرین­ کلایی س ط، "مقایسه مشخصات مقاومتی ماسه مسلح شده با رشته ­های مجزا با توزیع تصادفی در دستگاه­ های سه­ محوری و برش مستقیم"، هشتمین کنگره ملّی- مهندسی عمران، دانشکده مهندسی عمران، دانشگاه صنعتی نوشیروانی بابل، 17 و 18 اردیبهشت، 1393.
Abbaspour M, Aflaki E, Nejad FM, “Reuse of waste tire textile fibers as soil reinforcement”, Journal of Cleaner Production, 2019, 207, 1059-1071. https://doi.org/10.1016/j.jclepro.2018.09.253.
Afzali-Nejad A, Lashkari A, Shourijeh, PT, “Influence of particle shape on the shear strength and dilation of sand-woven geotextile interfaces”, Geotextiles and Geomembranes, 2017, 45 (1), 54-66, http://dx.doi.org/10.1016/j.geotexmem.2016.07.005.
Akbulut S, Arasan S, Kalkan E, “Modification of clayey soils using scrap tire rubber and synthetic fibers”, Applied Clay Science, 2007, 38 (1-2), 23-32. doi:10.1016/j.clay.2007.02.001.
ASTM D4253-16e1, “Standard Test Methods for Maximum Index Density and Unit Weight of Soils Using a Vibratory Table”, ASTM International, 2016, West Conshohocken, PA, www.astm.org
ASTM D4254-16, “Standard Test Methods for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density”, ASTM International, 2016, West Conshohocken, PA, www.astm.org
ASTM D3080 / D3080M-11, “Standard Test Method for Direct Shear Test of Soils under Consolidated Drained Conditions”, ASTM International, 2011, West Conshohocken, PA, www.astm.org
Azadegan O, Kaffash AE, Yaghoubi MJ, Pourebrahim GR, “Laboratory study on the swelling, cracking and mechanical characteristics of the palm fiber reinforced clay”, Electronic Journal of Geotechnical Engineering, 2012, 17, 47-54.
Chaduvula U, Viswanadham BVS, Kodikara J, “A study on desiccation cracking behavior of polyester fiber-reinforced expansive clay”, Applied Clay Science, 2017, 142, 163-72. http://dx.doi.org/10.1016/j.clay.2017.02.008.
Chen M, Shen SL, Arulrajah A, Wu HN, Hou DW, Xu YS, “Laboratory evaluation on the effectiveness of polypropylene fibers on the strength of fiber-reinforced and cement-stabilized Shanghai soft clay”, Geotextiles & Geomembranes, 2015, 43 (6), 515-23. http://dx.doi.org/10.1016/j.geotexmem.2015.05.004.
Consoli NC, Montardo JP, Donato M, Prietto PD, “Effect of material properties on the behaviour of sand-cement-fibre composites”, Proceedings of the Institution of Civil Engineers-Ground Improvement, 2004, 8 (2), 77-90. https://doi.org/10.1680/grim.2004.8.2.77.
Consoli NC, de Moraes RR, Festugato L, “Split tensile strength of monofilament polypropylene fiber-reinforced cemented sandy soils”, Geosynthetics International, 2011, 18 (2), 57-62. doi: 10.1680/gein.2011.18.2.57.
Consoli NC, Bellaver Corte M, Festugato L, “Key parameter for tensile and compressive strength of fibre-reinforced soil-lime mixtures”, Geosynthetics International, 2012, 19 (5), 409-414. http://dx.doi.org/10.1680/gein.12.00026.
Consoli NC, Rizzatti de Moraes R, Festugato L, “Variables controlling strength of fibre-reinforced cemented soils”, Proceedings of the Institution of Civil Engineers-Ground Improvement, 2013, 166 (4), 221-232. http://dx.doi.org/10.1680/grim.12.00004.
Cui H, Jin Z, Bao X, Tang W, Dong B, “Effect of carbon fiber and nanosilica on shear properties of silty soil and the mechanisms”, Construction & Building Materials, 2018, 189, 286-95. https://doi.org/10.1016/j.conbuildmat.2018.08.181.
Dang LC, Fatahi B, Khabbaz H, “Behaviour of expansive soils stabilized with hydrated lime and bagasse fibres”, Procedia Engineering, 2016, 143, 658-665. doi: 10.1016/j.proeng.2016.06.093.
Gao L, Zhou Q, Yu X, Wu K, Mahfouz AH, “Experimental study on the unconfined compressive strength of carbon fiber reinforced clay soil”, Marine Georesources & Geotechnology, 2017, 35 (1), 143-148, doi: 10.1080/1064119X.2015.1102184.
Ghadakpour M, Choobbasti AJ, Kutanaei SS, “Investigation of the Kenaf fiber hybrid length on the properties of the cement-treated sandy soil”, Transportation Geotechnics, 2020, 22, p.100301. https://doi.org/10.1016/j.trgeo.2019.100301.
Ghadr S, Bahadori H, “Anisotropic behavior of fiber-reinforced sands”, Journal of Materials in Civil Engineering, 2019, 31 (11), 04019270. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002917.
Ghadr S, Bahadori H, Assadi-Langroudi A, “Anisotropy in sand–fibre composites and undrained stress–strain implications”, International Journal of Geosynthetics and Ground Engineering, 2019, 5 (3), 1-13. https://doi.org/10.1007/s40891-019-0174-x.
Ghadr S, Samadzadeh A, Bahadori H, Assadi-Langroudi A, “Liquefaction resistance of fibre-reinforced silty sands under cyclic loading”, Geotextiles and Geomembranes, 2020, 48 (6), 812-827. https://doi.org/10.1016/j.geotexmem.2020.07.002.
Gray H, Ohashi H, “Mechanics of fiber-reinforcement in sand”, Journal of Geotechnical Engineering, ASCE, 1983, 109, 335-353. https://doi.org/10.1061/(ASCE)0733-9410(1983)109:3(335).
Han J, “Principles and practice of ground improvement”, John Wiley & Sons, 2015.
Hataf N, Rahimi MM, “Experimental investigation of bearing capacity of sand reinforced with randomly distributed tire shreds”, Construction & Building Materials, 2006, 20 (10), 910-916. doi:10.1016/j.conbuildmat.2005.06.019.
Hejazi SM, Sheikhzadeh M, Abtahi SM, Zadhoush A, “A simple review of soil reinforcement by using natural and synthetic fibers”, Construction & Building Materials, 2012, 30, 100-116. doi:10.1016/j.conbuildmat.2011.11.045.
Kalkan E, “Preparation of scrap tire rubber fiber–silica fume mixtures for modification of clayey soils”, Applied Clay Science, 2013, 80, 117-125. http://dx.doi.org/10.1016/j.clay.2013.06.014.
Kirsch K, Bell A, “Ground improvement”, 3rd ed. Boca Raton (Florida): CRC Press, Taylor & Francis Group, 2013.
Koerner RM, “Designing with geosynthetics”, 6th ed. (vol. 1). Xlibris Corporation, 2012.
Ladd R, “Preparing test specimens using undercompaction”, Geotechnical Testing Journal, ASTM, 1978, 1 (1), 16-23. doi: 10.1520/GTJ10364J.
Lashkari A, Falsafizadeh SR, Shourijeh PT, Alipour MJ, “Instability of loose sand in constant volume direct simple shear tests in relation to particle shape”, Acta Geotechnica, 2020, 15, 2507-2527. https://doi.org/10.1007/s11440-019-00909-4.
Lashkari A, Jamali V, “Global and local sand-geosynthetic interface behavior”, Géotechnique, 2021, 71 (4), 346-367, https://doi.org/10.1680/jgeot.19.P.109.
Li C, “Mechanical response of fiber-reinforced soil”, PhD Thesis, Faculty of the Graduate School of the University of Texas at Austin, 2005.
Mirzababaei M, Miraftab M, Mohamed M, McMahon P, “Unconfined compression strength of reinforced clays with carpet waste fibers”, Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139 (3), 483-493. doi: 10.1061/(ASCE)GT.1943-5606.0000792.
Mohajerani A, Burnett L, Smith JV, Markovski S, Rodwell G, Rahman MT, Kurmus H, Mirzababaei M, Arulrajah A, Horpibulsuk S, Maghool F, “Recycling waste rubber tyres in construction materials and associated environmental considerations: A review”, Resources, Conservation and Recycling, 2020, 155, p. 104679. https://doi.org/10.1016/j.resconrec.2020.10467.
Mohammadinia A, Disfani MM, Narsilio GA, Aye L, “Mechanical behaviour and load bearing mechanism of high porosity permeable pavements utilizing recycled tire aggregates”, Construction & Building Materials, 2018, 168, 794-804. https://doi.org/10.1016/j.conbuildmat.2018.02.179.
Mola-Abasi H, Khajeh A, Naderi Semsani S, “ Effect of the ratio between porosity and SiO2 and Al2O3 on tensile strength of zeolite-cemented sands”, Journal of Materials in Civil Engineering, 2018, 30 (4), p.04018028. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002197.
Mukherjee K, Mishra AK, “Hydro-mechanical properties of sand-bentonite-glass fiber composite for landfill application”, KSCE Journal of Civil Engineering, 2019, 23 (11), 4631-4640. doi: 10.1007/s12205-019-2015-9.
Narani SS, Abbaspour M, Hosseini SMM, Aflaki E, Nejad FM, “Sustainable reuse of Waste Tire Textile Fibers (WTTFs) as reinforcement materials for expansive soils: With a special focus on landfill liners/covers”, Journal of Cleaner Production, 2020, 247, p.119151. https://doi.org/10.1016/j.jclepro.2019.119151.
Patel SK, Singh B, “Shear strength and deformation behaviour of glass fibre-reinforced cohesive soil with varying dry unit weight”, Indian Geotechnical Journal, 2019, 49 (3), 241-254. https://doi.org/10.1007/s40098-018-0323-5.
Ple O, Lˆe TNH, “Effect of polypropylene fiber-reinforcement on the mechanical behavior of silty clay”, Geotextiles & Geomembranes, 2012, 32, 111-116, doi:10.1016/j.geotexmem.2011.11.004.
Roshan K, Janalizadeh Choobbasti A, Soleimani Kutanaei S, “Evaluation of the impact of fiber reinforcement on the durability of lignosulfonate stabilized clayey sand under wet-dry condition, Transportation Geotechnics, 2020, 23. https://doi.org/10.1016/j. trgeo.2020.100359.
Saberian M, Mehrinejad Khotbehsara M, Jahandari S, Vali R, Li J, “Experimental and phenomenological study of the effects of adding shredded tire chips on geotechnical properties of peat”, International Journal of Geotechnical Engineering, 2018, 12 (4), 347-356. doi:10.1080/19386362.2016.1277829.
Sivakumar Babu GL, Vasudevan AK, “Strength and stiffness response of coir fiber-reinforced tropical soil”, Journal of Materials in Civil Engineering, 2008, 20 (9), 571-577. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:9(571).
Tang C, Shi B, Gao W, Chen F, Cai Y, “Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil”, Geotextiles and Geomembranes, 2007, 25 (3), 194-202. doi:10.1016/j.geotexmem.2006.11.002.
Tang, CS, Shi B, Zhao, LZ, “Interfacial shear strength of fiber reinforced soil”, Geotextiles and Geomembranes, 2010, 28 (1), 54-62. doi:10.1016/j.geotexmem.2009.10.001.
Tang CS, Wang DY, Cui YJ, Shi B, Li J, “Tensile strength of fiber-reinforced soil”, Journal of Materials in Civil Engineering, 2016, 28 (7), 04016031. doi: 10.1061/(ASCE)MT.1943-5533.0001546.
Tanzadeh J, Vafaeian M, Yusefzadeh-Fard M, “Laboratory study on the performance of hybrid macro soil fiber reinforced mixture”, Construction & Building Materials, 2017, 134, 50-55. http://dx.doi.org/10.1016/j.conbuildmat.2016.12.053.
Valipour M, Shourijeh PT, Mohammadinia A, “Application of recycled tire polymer fibers and glass fibers for clay reinforcement”, Transportation Geotechnics, 2021, 27, p.100474. https://doi.org/10.1016/j.trgeo.2020.100474.
Wang YX, Guo PP, Shengbiao S, Haiping Y, Binxiang Y, “Study on strength influence mechanism of fiber-reinforced expansive soil using jute”, Geotechnical & Geological Engineering, 2016, 34 (4), 1079-88. doi: 10.1007/s10706-016-0028-4.
Wang YX, Guo PP, Ren WX, Yuan BX, Yuan HP, Zhao YL, Shan S-B, Cao P, “Laboratory investigation on strength characteristics of expansive soil treated with jute fiber reinforcement”, International Journal of Geomechanics, 2017, 17 (11), 04017101. doi: 10.1061/(ASCE)GM.1943-5622.0000998.
Wei L, Chai SX, Zhang HY, Shi Q, “Mechanical properties of soil reinforced with both lime and four kinds of fiber”, Construction & Building Materials, 2018, 172, 300-308. https://doi.org/10.1016/j.conbuildmat.2018.03.248.
Yang KH, Wei SB, Adilehou WM, Ho HC, “Fiber-reinforced internally unstable soil against suffusion failure”, Construction & Building Materials, 2019, 222, 458-73. https://doi.org/10.1016/j.conbuildmat.2019.06.142.
Yetimoglu T, Salbas O, “A study on shear strength of sands reinforced with randomly distributed discrete fibers”, Geotextiles & Geomembranes, 2003, 21 (2), 103-110. doi:10.1016/S0266-1144(03)00003-7.