اعمال روش پخش موج با دقت بالا در مدلسازی عددی جریان ترافیک کلان‌نگر براساس رفتار فیزیولوژیکی- روان‌شناختی

نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 گروه مهندسی عمران، دانشکده مهندسی، دانشگاه بیرجند

2 گروه مهندسی عمران، دانشکده مهندسی شهید نیکبخت، دانشگاه سیستان و بلوچستان، زاهدان

چکیده

در این مقاله، یک نسخه اصلاح‌شده الگوریتم پخش موج مرتبه دوم نوع گودونو (Godunov) با دقت بالا به­ منظور مدل­سازی کلان نگر یک بعدی جریان ترافیک ارائه شده است. روش موردنظر یک مدل خوش توازن بوده و قادر به رفتار کردن مؤلفه­ های منبع در داخل تفاوت شارهای مجاور روش حجم محدود می­ باشد. علاوه بر این، روش موردنظر از نوعی سرعت تقریبی جدید ریمان برای پخش عددی در حل معادلات مشتق‌های پاره‌ای غیرخطی هذلولوی (Hyperbolic) جریان ترافیک که پاسخ تحلیلی ندارند استفاده می‌نماید. عملکرد روش پیشنهادی با انتخاب دو مدل متداول پین- ویتهام (Whitham) و مدل پین- ویتهام بر اساس رفتار توأمان فیزیولوژیکی- روان‌شناختی راننده مورد ارزیابی قرار گرفته است، لذا مسئله ایست- و- حرکت جریان ترافیک، با چهار ناپیوستگی برای یک مسیر دایره‌ای با شرایط مرزی تناوبی انتخاب شد. در مقایسه الگوریتم پیشنهادی با تکنیک تجزیه رو که به­طور معمول برای گسسته سازی مدل کلان­نگر جریان ترافیک مورداستفاده است، تغییرات مکانی- زمانی دو متغیر سرعت و چگالی و پروفیل‌های مربوطه در زمان‌های مختلف ارائه گردید. نتایج مبین این مطلب است که الگوریتم پیشنهادی در مقایسه با تکنیک تجزیه رو، پاسخ‌های قابل‌قبول سازگار و پایدار با رعایت خاصیت حفظ مقدار مثبت و کنترل خطای پخش عددی، خصوصاً برای مدل متداول در برآورد متغیرهای اساسی جریان ترافیک ارائه می­‌دهد. برای مدل متداول در مدت زمان شبیه ­سازی با استفاده از تکنیک تجزیه رو، علاوه بر چگالی­ های غیرمجاز، سرعت غیرممکن منفی ۱۴ متر بر ثانیه مشاهده می­ شود، درصورتی­ که روش پیشنهادی در برآوردن خاصیت حفظ مقدار مثبت موفق عمل کرده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Applying High-Resolution Wave Propagation Method in Numerical Modeling of Macroscopic Traffic Flow based on Driver Physiological-Psychological Behavior

نویسندگان [English]

  • Morteza Araghi 1
  • Hossein Mahdizadeh 1
  • Sadegh Moodi 2
1 Department of Civil Engineering, University of Birjand, Birjand , Iran
2 Department of Civil Engineering, University of Sistan and Baluchesatn, Zahedan , Iran
چکیده [English]

In this paper, a high-resolution version of the Godunov-type second-order Wave Propagation Algorithm (WPA) for one-dimensional macroscopic traffic flow modeling is presented. The method is a well-balanced model and is able to behave the source terms within the flux-differencing adjacent to the finite volume method. The defined numerical scheme utilizes the advantage of combination both approximate and exact Riemann speeds which enables the method to avoid non-negative velocities. To the best of authors’ knowledge, no development of WPA with high-resolution for the common macroscopic Payne- Whitham (PW) model and its extended versions has taken place so far.

کلیدواژه‌ها [English]

  • Second-order macroscopic traffic flow models
  • Wave propagation algorithm
  • Flux-wave approach
  • Riemann solver
Bale DS, Leveque RJ, Mitran S, Rossmanith JA, “A Wave Propagation Method for Conservation Laws and Balance Laws with Spatially Varying Flux Functions”, SIAM Journal on Scientific Computing, 2003, 24 (3), 955-978.
Borges R, Carmona M, Costa B, Don WS, “An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws”, Journal of Computational Physics, 2008, 227 (6), 3191-3211.
Del Castillo JM, Pintado P, Benitez FG, “The reaction time of drivers and the stability of traffic flow”, Transportation Research Part B: Methodological, 1994, 28 (1), 35-60.
Chen J, Shi Z, Hu Y, “Numerical solutions of a multi-class traffic flow model on an inhomogeneous highway using a high-resolution relaxed scheme”, Journal of Zhejiang University SCIENCE C, 2012, 13 (1), 29-36.
Davoodi N, Adaptive Numerical Methods for Macroscopic Traffic Flow Problems. Ferdowsi University of Mashhad, 2014 (In Persian).
Delis AI, Nikolos IK, Papageorgiou M, “High-resolution numerical relaxation approximations to second-order macroscopic traffic flow models”, Transportation Research Part C: Emerging Technologies. Elsevier, 2014, 44, 318-349.
Greenshields BD, “A study in highway capacity”, Highway Research Board Proceedings, 1935, 448-477.
Khan Z, “Traffic modelling for intelligent transportation systems”, 2016.
Khan ZH, Gulliver TA, Azam K, Khattak KS, “Macroscopic Model on Driver Physiological and Psychological Behavior at changes in Traffic”, Journal of Engineering And Applied Sciences, 2019, 38 (2), 57-66.
Khan ZH, Gulliver TA, Gulliver TA, Khattak KS, Qazi A, “A Macroscopic Traffic Model Based on Reaction Velocity”, Iranian Journal of Science and Technology, Transactions of Civil Engineering, 2020, 44 (1), 139-150.
Khan ZH, Gulliver TA, “A macroscopic traffic model based on transition velocities”, Journal of Computational Science, 2020, 43, 101131.
LeVeque RJ, Finite volume methods for hyperbolic problems. Cambridge university press, 2002.
Lighthill MJ, Whitham GB, “On kinematic waves II. A theory of traffic flow on long crowded roads”, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1955, 229 1178, 317-345.
Mahdizadeh H, “A modified flux-wave formula for the solution of one-dimensional Euler equations with gravitational source term”, Iranian Journal of Numerical Analysis and Optimization, 2018, 8 (2), 25-37.
Mahdizadeh H, Sharifi S, Omidvar P, “On the Approximation of Two-Dimensional Transient Pipe Flow Using a Modified Wave Propagation Algorithm”, Journal of Fluids Engineering, 2018, 140 (7).
Mahdizadeh H, Stansby PK, Rogers BD, “On the approximation of local efflux/influx bed discharge in the shallow water equations based on a wave propagation algorithm”, International Journal for Numerical Methods in Fluids, 2011, 66 (10), 1295-1314.
Mahdizadeh H, Stansby PK, Rogers BD, “Flood Wave Modeling Based on a Two-Dimensional Modified Wave Propagation Algorithm Coupled to a Full-Pipe Network Solver”, Journal of Hydraulic Engineering, 2012, 138 (3), 247-259.
Mohammadian S, Numerical Study on Traffic Flow Prediction Using Different Second-Order Continuum Traffic Flow Models. Ferdowsi University of Mashhad. (In Persian)
Mohammadian S, van Wageningen-Kessels F, “Improved Numerical Method for Aw-Rascle Type Continuum Traffic Flow Models”, Transportation Research Record: Journal of the Transportation Research Board, 2018, 2672 (20), 262276.
Moodi S, Numerical Modellig of Flood Flow in Sewer Networks considering the Effects of the Manhole. Sistan and Baluchestan. (In Persian), 2017.
Moodi S, Mahdizadeh H, “Numerical Modelling of Water Influx Falling into an Empty Tank using a Modified Wave Propagation Algorithm”, Modares Mechanical Engineering, 2018, 18 (6), 182-190. (In Persian)
Ngoduy D, “Instability of cooperative adaptive cruise control traffic flow: A macroscopic approach”, Communications in Nonlinear Science and Numerical Simulation, 2013, 18 (10), 2838-2851.
Ngoduy D, Hoogendoorn SP, Van Zuylen HJ, “Comparison of Numerical Schemes for Macroscopic Traffic Flow Models”, Transportation Research Record: Journal of the Transportation Research Board, 2004, 1876 (1), 52-61.
Payne H, “Models of freeway traffic and control, Simulation Councils”, INC.: San Diego, CA, USA, 1971, 51-61.
Richards PI, “Shock Waves on the Highway”, Operations Research, 1956, 4 (1), 42-51.
Roe P, “Approximate Riemann solvers, parameter vectors, and difference schemes”, Journal of Computational Physics, 1981, 43 (2), 357-372.
Sreekumar M, Joshi SM, Chatterjee A, “Analyses and implications of higher order finite volume methods on first-order macroscopic traffic flow models”, Transportation Letters, 2019, 11 (10), 542-557.
Whitham GB, Linear and nonlinear waves, John Wiley and Sons.
Zhang HM, “A theory of nonequilibrium traffic flow”, Transportation Research Part B: Methodological, 1998, 32 (7), 485-498.