مدل‌سازی مقاومت فشاری تک‌محوری مصالح اساس بازیافت تمام عمق تثبیت‌شده با سیمان پرتلند با استفاده از روش رگرسیون چندجمله‌ای تکاملی

نوع مقاله : یادداشت پژوهشی

نویسندگان

1 دانشکده مهندسی عمران، دانشگاه صنعتی سیرجان

2 آزمایشگاه پیشرفته قیر و مخلوط‌های آسفالتی، دانشگاه صنعتی سیرجان

چکیده

لایه اساس بازیافت شده به­ روش تمام عمق، FDR، (Full Depth Reclamation)، مخلوطی از مصالح درشت‌دانه و خرده آسفالت بازیافتی، RAP، (Reclaimed Asphalt Pavement) است که توسط یک عامل تثبیت‌کننده تثبیت‌شده است. برای طراحی و کنترل کیفیت این مصالح، مقاومت فشاری تک‌محوری این مصالح ملاک عمل است. هدف این مقاله توسعه یک مدل یادگیری ماشین برای پیش‌بینی مقاومت فشاری تک‌محوری مصالح اساس بازیافت تمام عمق تثبیت‌شده با سیمان پرتلند بر اساس روش رگرسیون چندجمله‌ای تکاملی، EPR، (Evolutionary Polynomial Regression) است. برای این منظور، دو مصالح مختلف اساس با درصد‌های مختلفی از خرده آسفالت مخلوط و سپس با درصدهای متفاوتی از سیمان پرتلند تثبیت شدند و مقاومت فشاری نمونه‌ها در زمان‌های عمل­ آوری 7 و 28 روز تعیین شده است. برای آموزش و آزمایش مدل EPR، مجموعاً 64 داده UCS (Unconfined Compressive Strength) آزمایشگاهی مورد استفاده قرار گرفت. متغیرهای مستقل در مدل توسعه‌یافته به­ صورت درصد RAP، درصد سیمان، درصد رطوبت بهینه، درصد عبوری از الک نمره 200 و زمان عمل‌آوری در نظر گرفته شد. نتایج این تحقیق نشان می‌دهد که مدل توسعه داده‌شده در اکثر موارد با خطای کم­تر از 10 درصد توانایی پیش‌بینی مقاومت فشاری تک ­محوری را دارد.  همچنین مقدار ضریب رگرسیون R2 برای مجموعه داده‌های آموزش و آزمون به­ ترتیب برابر با 973/0 و 960/0 به­ دست آمد. نتایج تحلیل پارامتریک نشان داد که با افزایش درصد خرده آسفالت تا 20 درصد مقاومت فشاری افزایش و پس از آن کاهش می‌یابد. تحلیل حساسیت مدل پیشنهادی با استفاده از آزمون گاما نشان داد که درصد سیمان مهم‌ترین پارامتر تأثیرگذار برمقاومت فشاری تک­ محوری مصالح اساس بازیافت تمام عمق تثبیت‌شده با سیمان پرتلنداست.

کلیدواژه‌ها


عنوان مقاله [English]

Modeling of Unconfined Compressive Strength (UCS) of Full-Depth Reclaimed Base Materials Stabilized with Portland Cement Using Evolutionary Polynomial Regression

نویسندگان [English]

  • Ali Reza Ghanizadeh 1
  • Morteza Rahrovan 2
  • Nasrin Heydarabadi 2
1 Department of Civil Engineering, Sirjan University of Technology, Sirjan, Iran
2 Department of Civil Engineering, Sirjan University of Technology, Sirjan, Iran
چکیده [English]

In the present study, Evolutionary Polynomial Regression (EPR) technique is employed to develop a mathematical model to estimate the USC of Full Depth reclaimed (FDR) materials stabilized with Portland cement. To this end, a dataset containing 62 records from experimental studies related to unconfined compressive strength of full-depth reclaimed (FDR) base stabilized with Portland cement were used. Percentage of cement, percentage of RAP, percent passing of #200 sieve, optimum moisture content, and curing time were considered as independent variables. The results show that EPR has a great capability for prediction of the UCS in case of FDR base stabilized with Portland cement.

کلیدواژه‌ها [English]

  • Modeling
  • Full Depth Reclamation (FDR)
  • Portland cement
  • UCS
  • Evolutionary Polynomial Regression (EPR)
Ahangar-Asr A, Faramarzi A, Mottaghifard N, Javadi AA, “Modeling of permeability and compaction characteristics of soils using evolutionary polynomial regression”, Computers and geosciences, 2011, 37 (11), 1860-1869.
Alavi AH, Gandomi AH, Mollahasani A, “A Genetic Programming-Based Approach for the Performance Characteristics Assessment of Stabilized Soil”, Springer, 2012, 58, 343-376.
ARRA, “Asphalt Recycling and Reclaiming Association, Basic asphalt recycling manual”, Annapolis, Maryland, 2001, 48, 143-156.
Balf MR, Noori R, Berndtsson R, Ghaemi A, Ghiasi B, “Evolutionary polynomial regression approach to predict longitudinal dispersion coefficient in rivers”, Journal of Water Supply: Research and Technology- Aqua, 2018, 67 (5), 447-457.
Bang S, Lein W, Comes B, Nehl L, Anderson J, Kraft P, Sebaaly P, “Quality Base Material Produced Using Full Depth Reclamation on Existing Asphalt Pavement Structure”, Task 4: Development of FDR Mix Design Guide”, 2011, Federal Highway Administration; 2011. Contract No.: FHWA-HIF-12-015.
Bartku EC, “In-Situ Recycling: Applications, Guidelines, and Case Study for Local Governments”, PhD Thesis, Virginia Tech, 2014.
Batioja DD, “Evaluation of Cement Stabilization of a Road Base Material in Conjunction with Full-Depth Reclamation in Huaquillas”, 2011, Ms Thesis, Ecuador, Brigham Young University.
Berardi L, Giustolisi O, Kapelan Z, Savic DA, “Development of pipe deterioration models for water distribution systems using EPR”, Journal of Hydro Informatics, 2008, 10 (2), 113-126.
Das SK, Samui P, Sabat AK, “Application of artificial intelligence to maximum dry density and unconfined compressive strength of cement stabilized soil”, Geotechnical and Geological Engineering, 2011, 29 (3), 329-342.
Deengam S, Suebsuk J, Anyapho W, Kumpala A, “Strength of cement stabilized base course containing reclaimed asphalt pavement (RAP) by dynamic cone penetration (DCP) test”, Paper presented at the The 20th National Convention on Civil Engineering, Chonburi, Thailand, 2015.
Eidgahee DR, Rafiean AH, Haddad A, “A Novel Formulation for the Compressive Strength of IBP-Based Geopolymer Stabilized Clayey Soils Using ANN and GMDH-NN Approaches”, Iranian Journal of Science and Technology, Transactions of Civil Engineering, Hydrological Processes, 2019, 22, 4301-4309.
Ganne VK, “Long term durability studies on chemically treated reclaimed asphalt pavement (RAP) materials”, MS Thesis, The University of Texas at Arlington, 2010.
Ghorbani A, Hasanzadehshooiili H, “Prediction of UCS and CBR of microsilica-lime stabilized sulfate silty sand using ANN and EPR models; application to the deep soil mixing”, Soils and foundations, 2018, 58 (1), 34-49.
Giustolisi O, Doglioni A, Savic DA, Pierro F, “An evolutionary multiobjective strategy for the effective management of groundwater resources”, Water Resources Research Journal, 2008, 44 (W01403), 1-14.
Giustolisi O, Savic DA, “A symbolic data driven technique based on Evolutionary Polynomial Regression”, Journal of Hydroinformatics, 2006, 8 (3), 207-222.
Goldberg DE, “Genetic algorithms in search, optimization and machine learning”, Massachussets: Addison Wesley, 1989, 3 (120), 95-99.
Güllü H, “Function finding via genetic expression programming for strength and elastic properties of clay treated with bottom ash”, Engineering Applications of Artificial Intelligence, 2014, 35, 143-157.
Guthrie W, Brown A, Eggett D, “Cement stabilization of aggregate base material blended with reclaimed asphalt pavement”, Transportation Research Record, Journal of the Transportation Research Board (2026), 2007, 47-53.
Koza JR, “Genetic programming: on the programming of computers by means of natural”, MIT press, 1992, 1 (121).
Kroge M, McGlumphy K, Besseche T, “Full-Depth Reclamation with Engineered Emulsion in Fairburn, Georgia”, Transportation Research Record, Journal of the Transportation Research Board (2095), 2009, 2095 (20), 136-143.
Laucelli D, Berardi L, Doglioni A, Giustolisi O, “EPR-MOGA-XL: an Excel based paradigm to enhance transfer of research achievements on data-driven modelling”, Proceedings of 10th international conference on hydroinformatics HIC, 2012, 122, 14-18.
Main DT, “Specification on Cold In-Place Recycled Pavement Special Provision Section 307, 1993, 45.
Mallick R, Bonner D, Bradbury R, Andrews J, Kandhal P, Kearney E, “Evaluation of performance of full-depth reclamation mixes”, Transportation Research Record: Journal of the Transportation Research Board (1809), 2002, 199-208.
Miller HJ, Guthrie WS, Crane RA, Smith B, “Evaluation of cement-stabilized full-depth-recycled base materials for frost and early traffic conditions”, Report: Recycled Materials Resource Center, University of New Hampshire, 2006, 27.
MolaAbasi H, Shooshpasha I, “Prediction of zeolite-cement-sand unconfined compressive strength using polynomial neural network”, The European Physical Journal Plus, 2016, 131 (4), 108.
Morian DA, Solaimanian M, Scheetz B, Jahangirnejad S, “Developing Standards and Specifications for Full Depth Pavement Reclamation (FHWA-PA-2012-004-090107)”, Commonwealth of Pennsylvania Department of Transportation, USA, 2012, 29.
Motamedi S, Shamshirband S, Petković D, Hashim R, “Application of adaptive neuro-fuzzy technique to predict the unconfined compressive strength of PFA-sand-cement mixture”, Powder Technology 2015, 278, 278-285.
Mozumder RA, Laskar AI, Hussain M, “Empirical approach for strength prediction of geopolymer stabilized clayey soil using support vector machines”, Construction and Building Materials, 2017, 132, 412-424.
Pappas J, “Environmental Considerations of In-Place Recycling”, Paper presented at the Virginia Pavement Recycling Conference, Virginia, USA, 2012.
Puppala AJ, Hoyos LR, Potturi AK, “Resilient moduli response of moderately cement-treated reclaimed asphalt pavement aggregates”, Journal of Materials in Civil Engineering, 2011, 23 (7), 990-998.
Remesan R, Shamim MA, Han D, “Model data selection using gamma test for daily solar radiation”, 2008, 22 (123), 4301-4309.
Sathyapriya S, Arumairaj P, “Prediction of Unconfined Compressive Strength of a Stabilised Expansive Clay Soil using ANN and Regression Analysis (SPSS)”, Asian Journal of Research in Social Sciences and Humanities, 2017, 7 (2), 109-123.
Savic DA, Giutolisi O, Berardi L, Shepherd W, Djordjevic S, Saul A “Modelling sewer failure by evolutionary computing”, Proceeding of the Institution of Civil Engineers, Water Management, 2006, 159 (2), 111-118.
Slage C, “Washington County’s Experience with In-Place Recycling”, Paper presented at the 15th Annual TERRAP avement Conference, 2011.
Suebsuk J, Suksan A, Horpibulsuk S, “Strength assessment of cement treated soil/reclaimed asphalt pavement (RAP) mixture”, International Journal of GEOMATE, 2014, 6 (2), 878-884.
Suman S, Mahamaya M, Das SK, “Prediction of Maximum Dry Density and Unconfined Compressive Strength of Cement Stabilised Soil Using Artificial Intelligence Techniques”, International Journal of Geosynthetics and Ground Engineering, 2016, 2 (79), 11.
Taleb BI, Harichane K, Ghrici M, Boukhatem B, Rebouh R, Gadouri H, “Prediction of geotechnical properties of clayey soils stabilised with lime using artificial neural networks (ANNs)”, International Journal of Geotechnical Engineering, 2017, 72, 1-13.
Watson A, Parmee I, “System identification using genetic programming”, Proceedings of ACEDC’96, University of Plymouth, United Kingdom, 1996, 124, 57-62.
Wen H, Tharaniyil M, Ramme B, Krebs S, “Field performance evaluation of class C fly ash in full-depth reclamation: Case history study, Transportation Research Record”, Journal of the Transportation Research Board, 1869 (39), 2004, 41-46.