Yield Strength Reduction Factor and Inelastic Displacement Ratio Based on Earthquake Ground Motions Recorded in Iran

Authors

1 Department of Civil Engineering, Sahand University of Technology

2 Department of Civil Engineering, Sahand University of Technology, Tabriz

Abstract

     For economic reasons, current design philosophy allows buildings to experience inelastic deformations under the influence of strong earthquake ground motions. As a result, the design lateral strengths prescribed in earthquake-resistant design provisions are generally lower and, in some cases, much lower than the lateral strength required to maintain a structure in the elastic range in the event of severe earthquakes. Reductions in forces, produced by the hysteretic energy dissipation capacity of a structure, are expressed by strength reduction factors. The yield strength-reduction factor,  is defined as the ratio of the elastic strength demand to the inelastic strength demand as follows.

Keywords


"شبکه شتابنگاری زلزله ایران"، مرکز تحقیقات راه، ساختمان و مسکن.
بهشتی اول س، کبیری ش، "معرفی ضریب کاهش مقاومت ناشی از شکل­پذیری سازه­ها برای حرکات نزدیک گسل"، اولین کنفرانس بین­المللی ساخت و ساز شهری در مجاورت گسل­های فعال، 1390.
تهرانی­زاده م، حامدی ف، "بررسی اثر شکل­پذیری و نوع خاک و زمان تناوب بر ضریب کاهش تسلیم الاستوپلاستیک تحت اثر زلزله­های ایران"، چهارمین کنفرانس بین­المللی زلزله­شناسی و مهندسی زلزله، 1382.
قدرتی امیری غ، زاهدی م، مهدویان ع، غلامی س، "محدوده فرکانسی مناسب جهت پردازش شتابنگاشت­های ایران برای انواع شرایط ساختگاهی"، نشریه دانشکده فنی دانشگاه تهران، 1386، 35 (2)، 231-249.
مقدم ح، فنائی ن، "بررسی روابط کاهندگی مختلف در پیش‌بینی شتاب رکوردهای زمین‌لرزه سیلاخو"، مجله عمران شریف، 1385، 17 (35)، 6-15.
Borzi B, Elnashai AS, “Refined force reduction factors for seismic design”, Engineering Structures, 2000, 22 (10), 1244-1260.
Chopra AK, “Dynamics of Structures: Theory and Application to Earthquake Engineering (4th ed. Vol. 4th Edition). NJ: Prentice-Hall: Englewood Cliffs, 2012.
Chopra AK, Chintanapakdee C, “Comparing response of SDF systems to near‐fault and far‐fault earthquake motions in the context of spectral regions”, Earthquake Engineering & structural Dynamics, 2001, 30 (12), 1769-1789.
Chopra AK, Chintanapakdee C, “Inelastic deformation ratios for design and evaluation of structures: single-degree-of-freedom bilinear systems”, Journal of Structural Engineering, 2004, 130 (9), 1309-1319.
Elghadamsi F, Mohraz B, “Inelastic earthquake spectra”, Earthquake engineering & structural dynamics, 1987, 15 (1), 91-104.
Hassani N, Ghodrati Amiri G, Bararnia M, Sinaiean F, “Inelastic Displacement Ratio for Structures Subjected to Pulse Like Near Fault Ground Motions”, Modares Civil Engineering journal, 2013, 13 (1), 15-28.
Hidalgo P, Arias A, “New Chilean code for earthquake-resistant design of buildings”, Paper presented at the Proceedings 4th US National Conference on Earthquake Engineering.
Lai SSP, Biggs JM, “Inelastic response spectra for aseismic building design”, Journal of the Structural Division, 1980, 106 (6), 1295-1310.
Lee W, Yu C, Tung S, “A displacement‐based strength reduction factor for high‐rise steel moment‐resisting frames”, The Structural Design of Tall and Special Buildings, 2006, 15 (3), 233-247.
MATLAB R2011b (Version 7.13.0.564), 2011, the Math Works Inc.
Miranda E, “Seismic evaluation and upgrading of existing buildings”, (Ph.D.), University of California at Berkeley, Berkeley, California, 1991.
Miranda E, “Inelastic displacement ratios for structures on firm sites”, Journal of Structural Engineering, 2000, 126 (10), 1150-1159.
Miranda E, Bertero VV, “Evaluation of structural response factors using ground motions recorded during the Loma Prieta earthquake”, CSMIP-1991.
Miranda E, Bertero VV, “Evaluation of strength reduction factors for earthquake-resistant design”, Earthquake spectra, 1994, 10, 357-357.
Miranda E, Ruiz-Garcia J, “Influence of stiffness degradation on strength demands of structures built on soft soil sites”, Engineering Structures, 2002, 24 (10), 1271-1281.
Naeim F, Key D, “The seismic design handbook”, edited by Farzad Naeim, Van Nostrand Reinhold, New York, 1989. No. of pages: 450. Price: £49. ISBN: W42-26992-6, Earthquake Engineering & Structural Dynamics, 1990, 19 (4), 623-623.
Nassar AA, Krawinkler H, Seismic Demands for SDOF and MDOF Systems (95), Retrieved from Stanford, California, 1991.
Newmark NM, Hall WJ, “Seismic design criteria for nuclear reactor facilities”, Paper presented at the Proc. World Conf. Earthquake Eng., B-4, 1969.
Parsaeian SMP, Hosseini Hashemi B, Sarvghad Moghadam AR, “Inelastic Displacement Ratios for Structures on Firm Soil Sites Subjected to Iran Earthquakes Records”, Modares Civil Engineering journal, 2013, 12 (4), 11-25.
Riddell R, Hidalgo P, Cruz E, “Response modification factors for earthquake resistant design of short period buildings”, Earthquake spectra, 1989, 5 (3), 571-590.
Riddell R, Newmark NM, “Statistical analysis of the response of nonlinear systems subjected to earthquakes”, Retrieved from 1979.
Ruiz‐García J, Miranda E, “Inelastic displacement ratios for evaluation of existing structures”, Earthquake Engineering & Structural Dynamics, 2003, 32 (8), 1237-1258.
SAP2000 Ultimate 15.0.0, Linear and Nonlinear Static and Dynamic Analysis and Design of Three Dimensional Structures, 2011, Berkeley, CA: Computers and Structures Inc.
Tiwari AK, Gupta VK, “Scaling of ductility and damage‐based strength reduction factors for horizontal motions”, Earthquake Engineering & Structural Dynamics, 29 (7), 969-987.
Vidic T, Fajfar P, Fischinger M, “Consistent inelastic design spectra: strength and displacement, Earthquake Engineering & Structural Dynamics, 1994, 23 (5), 507-521.
Zhai C, Li S, Xie L, Sun Y, “Study on inelastic displacement ratio spectra for near-fault pulse-type ground motions”, Earthquake Engineering and Engineering Vibration, 2007, 6 (4), 351-355.