Impact of pH Variations of Kaolinite upon Some of its Geotechnical and Geo- Environmental Properties

Authors

1 Faculty of Civil Engineering Bu- Ali Sina University, Iran; School of Civil Engineering, University of Tehran, Iran

2 University College of Omran and Tosseeh, Hamedan, Iran

Abstract

The use of clayey soils as clay barrier in landfills is very common. This is due to the suitable adsorption, buffering capacity and water retention of clays (Yong et al., 1992). However, changes in geotechnical and microstructural properties of clayey soils in acidic and alkaline conditions have caused many challenges in the application of clayey soils in these projects (Cherian, 2018). In industrial regions, soils are subjected to the acidic rains; therefore they usually encounter acidic conditions. On the other hand, in humidity condition areas, due to the evaporation of soil pore fluid, soils usually run into the alkaline conditions. These environmental conditions have caused the soils to have different initial pH backgrounds (Chemeda, 2015). These changes in the pH of clayey soils may cause some changes in geotechnical and geo-environmental properties of soil. Such a change can affect the long durability of barrier properties. In spite of several researches which have been performed on the geo-environmental properties of clayey soil, the review of the previous researches shows that there is a lack of extensive research on the subject of pH effect of clay on its properties and behaviour (Ouhadi and Yong, 2003). In addition, in the recent years the use of kaolinite as a lowest barrier clay layer in landfills has increased. Therefore, the main objective of this paper is to investigate on the impact of pH variations of kaolinite upon some of its geotechnical and geo-environmental properties.
To achieve this objective in this research with addition of acid and alkaline to kaolinite, several soil samples with different initial pH were prepared. Then, with the application of a series of microstructural and macro-structural experiments such as Atterberg limits, grain size distribution, unconfined compression strength and XRD experiments on kaolinite samples having different initial pH (3, 5, 9, and 12), the variations of some of its geotechnical and geo-environmental properties are investigated.

Keywords


احمدی م م، حسنلوراد م، خاتمی س م ح، "بررسی اثر تغییرات درجه pH شیرابه بر خصوصیات فیزیکی و مکانیکی خاک رس کائولینیت در حضور بنتونیت"، نشریه علمی پژوهش­ های تجربی در مهندسی عمران، 1394، 2، 33-25.
اوحدی و ر، چوبچیان لنگرودی س ا، "تأثیر ظرفیت و غلظت کاتیون بر نتایج آنالیز پرتو ایکس کانی رسی اسمکتیت"، مجله بلورشناسی و کانی­ شناسی ایران، 1390، 280-271.
اوحدی و ر، شعبانیان م ر، 1394، "تأثیر تغییر pH اولیه بنتونیت بر برخی مشخصات ژئوتکنیکی و ژئوتکنیک زیست ­محیطی آن"، دهمین کنگره بین‌المللی مهندسی عمران.
اوحدی و ر، بهادری­نژاد ا ر، امیری م، "مطالعه نگهداشت آلاینده سرب در نمونه‌های کائولینیت حاوی درصدهای مختلف کربنات طی فرایندهای جذب و الکتروسینتیک"، مجله مهندسی عمران مدرس، 1393، 14 (3)، 30-17.
اوحدی و ر، گودرزی ا ر، "تأثیر تغییر خصوصیات مایع منفذی و افزایش درجه حرارت بر پارامترهای ژئوتکنیکی و ژئوتکنیک زیست‌محیطی رس اسمکتیت"، نشریه مهندسی عمران و محیط زیست دانشگاه تبریز، 1393، 44 (3)، 25-17.
اوحدی و ر، فخیم ­جو م س، امید نائینی س ت، "مقایسه نحوه تغییرات رفتار خمیری و نفوذپذیری بنتونیت در حضور آلاینده­ های آلی و فلز سنگین"، نشریه مهندسی عمران و محیط‌زیست دانشگاه تبریز، 1395، 46 (4)، 36-25.
تابـع بـردبار ع، رئیسـی استبـرق ع، غازیانـی ف، "استفاده از روش الکتروکینتیـک در پاکسـازی یک خاک رسـی آلوده بهMTBE  "، نشریه مهندسی عمران و محیط زیست دانشگاه تبریز، 1394، 45 (2)، 33-25.
American Society for Testing and Materials, ASTM, Annual Book of ASTM Standards, Philadelphia, 1994, 4, 08.
Brady PV, Walther JV, “Controls on silicate dissolution rates in neutral and basic pH solutions at 25˚C”, Geochim Cosmochim Acta 53, 1989, 2823-2830.
Chemeda YC, Deneele D, Christidis GE, Ouvrard G, “Influence of hydrated lime on the surface properties and interaction of kaolinite particles”, Applied Clay Science, 2015, 107, 1-13.
Cherian C, Kollannur NJ, Arnepalli DN, “Calcium absorption on clays: Effects of mineralogy”, pore fluid chemistry and temperature, Applied Clay Science, 2018, 160, 282-289.
Essington ME, “Soil and Water Chemistry”, An Integrative Approach, CRC Press, p.534, 2005.
Gajo A, Maines M, “Mechanical effects of aqueous solutions in organic acids and bases on a natural active clay”, Geotechnique, 2007, 57 (8), 687-699.
Gori U, “The pH influence on the index properties of clays”, Bulletin of International Association Engineering Geology, 50, 1994, 37-42.
Gratchev IB, Sassa K, “Cyclic behavior of fine-grained soils at different pH values”, Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135 (2), 271-279.
Hesse PR, “A textbook of soil chemical analysis”, William Clowes and Sons, 1971, 519.
Mitchell J, “Chemical effects on clay Hydraulic conductivity”, 1995.
Ouhadi VR, Yong RN, “Experimental study on instability of bases on natural”, Applied Clay Science, 2007, 238-249.
Ouhadi VR, Yong RN, “Study of transformation of clay minerals in the interaction process with additives by use of scanning electron microscope and XRD and its relation to mechanical behavior”, Iran Journal Crystallography Mineral, 2003, 10 (1), 87-97.
Reeves GM, Sims I, Cripps JC, “Clay Materials Used in Construction”, Cromwell Press, Trowbridge, UK, p. 525, 2006.
Santamarina JC, Klein KA, Palomino A, Guimaraes MS, “Micro-scale aspects of chemo-mechanical coupling: Inter-particle forces and fabric. In: Di Maio, Hueckel and Loret (eds) Chemo-mechanical coupling in clays”, From Nano-Scale to Engineering Applications”, Swets and Zeitlinger, Lisse, 2002.
Stumm W, “Chemistry of the solid-water influence John Wiley & Sons”, Inc., New York. 428p, 1992.
Yong RN, Mohamed AMO, Warketin BP, “Principles of contaminant transport in soils”, Elsevier, Holland, 1992.
Wang YH, Siu WK, “Structure characteristics and mechanical properties of kaolinite soils I. Surface charges and structural Characterizations”, Canadian Geotechnical Journal, 2006, 43 (6), 587-600.