Environmental Impact Assessment of Irrigation Network Implementation on Triple Environments

Authors

1 Department of Civil Engineering, University of Qom

2 Department of Irrigation & Reclamation, Faculty of Agricultural Engineering & Technology, College of Agriculture & Natural Resources, University of Tehran, Karaj

Abstract

The present study investigates the EIA on the implementation of Shahriyar Dam irrigation network design on the physical, biological, and social, economic and cultural components. In this research, the Leopold matrix method is used for EIA. This method can be cost effective in time, cost and volume due to quantitative design results. One of the important innovations of this research is in the type of the case study. In this study, the environmental impacts assessment of irrigation network of Shahriar dam is evaluated. This network is intended to compensate for part of agricultural land damage that is submerged in Shahriar dam reservoir. Obviously, the main purpose of the dam construction is to save about 700 million cubic meters of water for the Gilan and Foumanat irrigation network and somehow it plays an important role for the Sefidrud dam. In short, less than 10% of the dam reservoir volume is allocated to irrigation network water supply.

Keywords


ابوالحسنی ن، صیادی م ح، "اثرات منفی زیست‌محیطی سدسازی و راه‌کار کاهش آن"، اولین کنفرانس ملی عمران و توسعه، شت، دانشگاه آزاد اسلامی واحد لشت­نشا، 1390، چهارم اسفند.
شبانکاری م، حلبیان اح، "بررسی اثرات زیست‌محیطی دریاچه سد زاینده‌رود"، انسان و محیط زیست، 1390، 8 (1)، 42-29.
شیبانی ب، "ارزیابی اثرات زیست‌محیطی در شبکه‌های آبیاری و زهکشی"، اولین همایش ملی چالش‌های منابع آب و کشاورزی، دانشگاه آزاد اسلامی واحد خوراسگان اصفهان، 1392، 24 بهمن، 8-1.
Bailey J, “Environmental impact assessment and management: An underexplored relationship”, Environmental Management, 1997, 21 (3), 317-327.
Canter LW, “Environmental impact assessment”, McGraw Hill Book Company, New York, 1982.
El-Fadl K, El-Fadel M, “Comparative assessment of EIA systems in MENA countries: Challenges and prospects”, Environmental Impact Assessment Review, 2004, 24 (6), 553-593.
Gilbuena R, Kawamura A, Medina R, Amaguchi H, “Environmental impact assessment of structural flood mitigation measures by a rapid impact assessment matrix (RIAM) technique: A case study in Metro Manila, Philippines”, Science of the Total Environment, 2013, 456, 137-147.
Hafez Moghaddas N, Hajizadeh Namaghi H, “Hazardous waste landfill site selection in Khorasan Razavi province, Northeastern Iran”, Arabian Journal of Geosciences, 2011, 4 (1-2), 103-113.
Kuitunen M, Jalava K, Hirvonen K, “Testing the usability of the rapid impact assessment matrix (RIAM) method for comparison of EIA and SEA results”, Environmental Impact Assessment Review, 2008, 28 (4-5), 312-320.
Leopold LB, Clarke FE, Henshaw BB, Balsley JR, “A procedure for evaluating environmental impact”, Washington D. C.: U.S. Geological Survey, Circular 645, 1971.
Liu KFR, Lai J-H, “Decision-support for environmental impact assessment: A hybrid approach using fuzzy logic and fuzzy analytic network process”, Expert Systems with Applications, 2009, 36 (3), 5119-5136.
Montazar A, Nasiri Gheidari O, Snyder RL, “A fuzzy analytical hierarchy methodology for the performance assessment of irrigation projects”, Agricultural Water Management, 2013, 121, 113-123.
NEPA (National Environmental Policy Act). “National Environmental Policy Act of 1969, as amended”, 42 USC Sections 4321-4347. Available at http://ceq.hss.doe.gov/nepa/regs/nepa/nepaeqia.htm, 1970.
Schneider RCS, Lara LRS, Ceolin MM, Kaercher JA, Schneider M, “Environmental impact of castor oil catalytic transfer hydrogenation”, Clean Technologies and Environmental Policy, 2013, DOI: 10.1007/s10098-012-0567-1.
The World Bank Independent Evaluation Group (WBIEG), “An impact evaluation of India’s second and third Andhra Pradesh irrigation projects: A case of poverty reduction with low economic returns”, Washington, D.C., 2008, 130 p.