The Effect of Zeolite, Silica Fume and Metakaolin on Workability Behavior and Strength of Self-Compacting Concrete (SCC)

Authors

1 Faculty of Civil Engineering University of Zanjan, Zanjan

2 Zzanjan University

3 Zanjan University

Abstract

Progress in concrete technology has led to the advancement of a new type of concrete, which is known as self-consolidating concrete or self-compacting concrete (SCC). It is a highly flowing concrete that spreads through dense reinforcement, reaches every corner of the formwork, and is consolidated under its own weight without vibration or any other means of compaction. Nowadays SCC is becoming more popular and demandable worldwide due to its workability and efficiency (El Mir et al. 2015 and Khayat. 1999).
Self-compacting concrete (SCC) mixes always contain a powerful superplasticizer and often use a large quantity of filler materials and/or viscosity-modifying admixtures. The superplasticizer is necessary for producing a highly fluid concrete mix, while the filler materials or viscosity agents are required to maintain sufficient stability/cohesion of the mixture, hence reducing bleeding, segregation and settlement (Elyamany et al., 2014).
The present work aims to study the effect of filler types on workability behavior and hardened properties of self-compacting concrete (SCC).

Keywords


رمضانیانپور ع ا، میرولد س، و آرامون ا، "اثر انواع پوزولان‌های طبیعی بر دوام بتن در برابر حمله کلریدی"، اولین کنفرانس ملی بتن، تهران، ایران، 15 مهر، 1388.
کوهدرق م، شیردل م، "بررسی خواص بتن خود متراکم و مقایسه آن با بتن معمولی با استفاده از نتایج آزمایشگاهی"، کنگره ملی بتن خود متراکم، مرکز بین‌المللی علوم و تکنولوژی پیشرفته و علوم محیطی، کرمان، ایران، 23-22 اردیبهشت، 1390.
مجموعه استانداردها و آیین‌نامه‌های ساختمانی ایران، "روش ملی طرح مخلوط بتن"، مرکز تحقیقات ساختمان و مسکن، شماره نشریه ض-479، 1386.
Boel V, De Schutter G, “Pore structure of SCC in comparison with traditional concrete”, Sixth CANMET/ACI Conference on Recent Advances in Concrete Technology, Ghent University, Belgium, 2003.
BS 1881- 116, “Method for determination of compressive strength of concrete cubes”, British Standard, Testing Concrete, 1983.
Chan YN, Ji X, “Comparative study of the initial surface absorption and chloride diffusion of high performance zeolite, silica fume and PFA concretes”, Cement and Concrete Composites, 1999, 21(4), 293-300.
El Mir A, Nehme SG, “Porosity of self-compacting concrete”, Procedia Engineering, 2015, 123, 145-152.
European Federation Dedicated to Specialist Construction Chemicals and Concrete Systems, (EFNARK), “Specification and guidelines for self-compacting concrete”, February, 2002.
Feng NQ, Peng GF, “Applications of natural zeolite to construction and building materials in china”, Construction and Building Materials, 2005, 19, 579-584.
Gesoğlu M, Güneyisi E, Özbay E, “Properties of self-compacting concretes made with binary, ternary, and quaternary cementitious blends of fly ash, blast furnace slag, and silica fume”, Construction and Building Materials, 2009, 23(5), 1847-1854.
Mehta PK, “Greening of the concrete industry for sustainable development”, Concrete International, July 2002, 23.
Poon CS, Lam L, Kou S, Wong YL, Wong R, “Rate of pozzolanic reaction of metakaolin in high-performance cement pastes”, Cement and Concrete Research, 2001, 31(9), 1301-1306.
Prepared by a Project Group Comprising Five European Federations (BIBM, CEMBUREAU, ERMCO, EFCA, EFNARK), “The European guidelines for self-compacting concrete”, May, 2005.
Zhu W, Gibbs JC, Bartos PJM, “Uniformity of in situ properties of self-compacting concrete in full scale structural elements”, Cement and Concrete Composites, 2001, 23(1), 57-64.