Comparison of Different Structures of a Proposed Equivalent Pipe Network Model for Analysis of 2D Nonlinear Flow through Isotropic Coarse Porous Media

Authors

Faculty of Engineering, Ferdowsi University of Mashhad

Abstract

An equivalent pipe network model (EPNM), is proposed in this study for analysis of steady two-dimensional (2D) nonlinear flow with free surface through structures made of coarse granular porous media. Pipe network used for modeling the pores and throats within the porous media, consists of orthogonal pipelines in which flow through the pipelines simulates flow through porous media. Physical and geometrical characteristics of the pipe network model such as diameter, length and friction factor of pipes are determined based on porous media characteristics e.g. porosity, mean particle size and friction factor in the turbulent region of flow. Since there is not a unique structure for an EPNM, performance of three different structures of the developed EPNM with different pipe diameters is investigated. A set of available experimental data for a physical model made of rockfill is used to compare the performance of different structures of EPNM.
 

Keywords


[1]       Herrera, N. H., Felton, G. K., "Hydraulics of Flow through a Rockfill Dam using Sediment-Free Water", Transactions of the ASABE, 1991, 34 (3), 871-875.
[2]       Kells, J. A., "Spatially Varied Flow over Rockfill Embankments", Canadian Journal of Civil Engineering, 1993, 20 (5), 820-827.
[3]     Kells, J. A., "Analysis of Flow through a Gabion Dam", Annual Conference of CSCE, 11th Canadian Hydrotechnical Conference, Fredericton, New Brunswick, 1993, pp 51-60.
[4]     Cakmak, A., "Analysis of Nonlinear Darcy-Forchheimer Flow in Porous Media", PhD Thesis, Graduate Faculty of Texas Tech University, Lubbock, Texas, United States, 2009.
[5]     Thauvin, F., Mohanty, K. K., "Network Modeling of Non-Darcy Flow through Porous Media", Transport in Porous Media, 1998, 31 (1), 19-37.
[6]       Hilfer, R., "Review on Scale Dependent Characterization of the Microstructure of Porous Media", Transport in Porous Media, 2002, 46, 373-390.
[7]       Al-Raoush, R., Thompson, K., Willson, C. S., "Comparison of Network Generation Techniques for Unconsolidated Porous Media", Soil Science Society of America Journal, 2003, 67, 1687-1700.
[8]       Acharya, R. C., Zee, S., Leijnse, A., "Porosity-Permeability Properties Generated with a New 2-Parameter 3D Hydraulic Pore-Network Model for Consolidated and Unconsolidated Porous Media", Advances in Water Resources, 2004, 27, 707-723.
[9]       Martins A. A., Laranjeira, P. E., Braga, C. H., and Mata, T. M., "Progress in Porous Media Research: Modeling of Transport Phenomena in Porous Media using Network Models", Nova Science Publishers, 2009.
[10]     Raoof, A. Hassanizadeh, S. M., "A New Method for Generating Pore-Network Models of Porous Media", Transport in Porous Media, 2010, 81, 391-407.
]11[    افضلی، س. ح.، عابدینی، م. ج.، منجمی، پ.، "تعیین ویژگی­های فیزیکی شبکه معادل در تحلیل جریان درون محیط­های متخلخل با استفاده از مدل­های شبکه­ای"، مجله آب و فاضلاب، 1387، 68، 48-56.
]12[     افضلی، س. ح.، عابدینی، م. ج.، منجمی، پ.، "شبیه­سازی جریان آب در محیط متخلخل با سطح آزاد با بهره­گیری از مدل شبکه ترکیبی"، مجله تحقیقات منابع آب ایران، 1388، 5 (2)، 62-70.
[13]     Afzali, S. H., Monadjemi, P., "Simulation of Flow in Porous Media: An Experimental and Modeling Study", Journal of Porous Media, 2014, 17 (6), 469-481.
[14]     Hosseini, S. M., Joy, D. M., "Calibration of Hydraulic Parameters for Flow through Rockfill Structures", Dam Engineering, 2006, 17 (2), 85-111.
[15]     Hosseini, S. M., Joy, D. M., "Development of an Unsteady Model for Flow through Coarse Heterogeneous Porous Media Applicable to Valley Fills", International Journal of River Basin Management, 2007, 5 (4), 253-265.
[16]     Joy, D. M., "Nonlinear Flow in a Coarse Porous Media", Annual Conference of CSCE, Vancouver, British Columbia, 1991, pp 106-115.
[17]     Dullien, F. A. L., "Porous Media: Fluid Transport and Pore Structure", Aademic Press, United States, 1992.
[18]     Cheng, N. S., Hao, Z. Y., Tan, S. K., "Comparison of Quadratic and Power Law for Nonlinear Flow through Porous Media", Experimental Thermal Fluid Science, 2008, 32 (8), 1538-1547.
[19]     Sidiropoulou, M. G., Moutsopoulos, K. N., Tsihrintzis, V. A., "Determination of Forchheimer Equation Coefficients a and b", Hydrological Processes, 2007, 21, 534-554.
[20]     Hosseini, S. M., "Statistical Evaluation of the Empirical Equations that Estimate Hydraulic Parameters for Flow through Rockfill", Stochastic Hydraulics, 2000, 53, 35-51.
[21]     Hosseini, S. M., "On the Performance of Different Empirical Loss Equations for Flow through Coarse Porous Media", International Journal of Engineering, 2002, 15 (3), 249-254.
[22]     Stephenson, D., "Rockfill in Hydraulic Engineering: Developments in Geotechnical Engineering", Elsevier Scientific Publishing Company, Amsterdam, Oxford, New York, US, 1979.
[23]     Vukovic, M., Soro, A., "Determination of Hydraulic Conductivity of Porous Media from Grain-Size Composition", Water Resources Publications, 1992.
[24]     Sahimi, M., "Flow and Transport in Porous Media and Fractured Rock: From Classical Methods to Modern Approaches", 2nd Edition, VCH Publishers, Weinheim, Germany, 2011.
[25]     Abareshi, M., Hosseini, S. M., Aftabi Sani, A., "A Simple Iterative Method for WDN Analysis", Under Review in Applied Mathematical Modeling, 2016.