The Effect of Active Confinement and shear key Elements on the Flexural Behavior of Concrete Filled Steel Tube (CFST)

Authors

1 Civil Engineering Faculty, Babol Noshirvani University of Technology

2 Faculty of Engineering and Technology, University of Mazandaran

Abstract

In recent years, extensive research has been carried out on concrete filled steel tubes (CFST). The subsequent results indicate the superiority of concrete filled steel tubes in relation to reinforced concrete or steel members.This section type offers multiple structural advantages such as increasing the loading capacity, higher value of absorbed energy, ductile deformation, seismic resistance, and sufficient damping.
Applying the initial pressure on the fresh concrete and removing the excess water increased the compressive strength and Elastic modulus of concrete [1-3]. The effective factors on the flexural behavior of CFST beams was investigated and was concluded that the active confinement has no effect on the sample's failure mode [4]. However, active confinement leads to reduction in the extent and intensity of concrete crushing in the compressive zone as well as reduction in the extent of the cracked region and crack depth in the sample's tensile zone. Furthermore, the results showed that the best performance for active confinement of the concrete core is obtained for a section with D/t=30 and low compressive strength of the concrete core. In this section, the value of absorbed energy and the flexural strength increase simultaneously.

Keywords


[1]    Hosaka, T., Umehara, T., Nakamura, S., Nishiumi, K., "Design and Experiments on a New Rail Way Bridge System Using Concrete Filled Steel Pipes", ASCCS Seminar, Concrete filled steel tubes- a comparison of international codes and practices, ASCCS seminar, Innsbruck, Austria, 1997.
[2]    Liu, Z., Goel, SC., "Cyclic Load Behavior of Concrete-Filled Tubular Braces", J Struct Div, ASCE 1988; 114 (7), 1488-506.
[3]    Zhao, XL., Grzebieta, R., Lee C., "Void-Filled Cold-Formed RHS Braces Subjected To Large Deformation Cyclic Axial Loading", J Strcut Engineering, ASCE 2002; 128 (6), 746-53.
[4]    Hajjar, J., "Concrete-Filled Steel Tube Columns under Earthquake Loads", J. Progress Struct, Engng Mater, 2002 (1), 1-10.
[5]    Roeder, CW., "Overview of Hybrid and Composite Systems for Seismic Design in the United States", Engng Struct, 1998, 20 (4-6): 355-63.
[6]    Fukumoto, Y., "Structural Stability Design, Steel and Composite Structures", Oxford: Pergamon, 1997.
[7]    Karbhari, V. M., "Structural Characterization Of Fiber-Reinforced Composite Short and Medium Span Bridge Systems", in: proceedings of European conference on Composite Materials (ECCM-8), June 1998. P. 35-42.
[8]    Fam A., Pando, M., Filz, G., Rizakalla, S., "Precast Composite Piles for the Route 40 Bridge in Virginia Using Concrete-Filled FRP Tubes", PCI J 2003, 48 (3), 32-45.
[9]    Fam, A., Greene, R., Rizkalla, S, "Field Applicationns of Concrete-Filled FRP Tubes for Marine Piles. Field Application of FRP Reinforcement: Case Studies", ACI special publication SP-215-9; 2003, P. 161-80.
[10]  Bondi, R., "Concrete Filled Tubular Flange Girder Bridge", Modern Techniques in Bridge Engineering: Proceedings of 6th New York City Bridge Conference, 25-26 July 2011, pp. 137-147.
[11]  Webb, J., Beyton, J. J., "Composite Concrete Filled Steel Tube Columns", In: Proceeding of Structural Engineering Conference, Adelaide: The Institution of Engineers Australia; 1990. Pp. 181-5.
[12]  Han, L. H., Zhao X. L., Tao, Z., "Tests and Mechanics Model of Concrete-Filled SHS Stub Columns, Columns and Beam-Columns", Steel & Composite Structures- an International Journal 2001, 1 (1), 51-74.
[13]  Neogi, P. K., Sen, H. K., Chapman, J. C., "Concrete Filled Tubular Steel Columns under Eccentrical Loading", Journal of Structural Engineering 1969, 47 (5), 187-95.
[14]  Probst, A. D., Kang, T. H. K., Ramseyer, Ch., Kim, U., "Composite Flexural Behavior of Full-Scale Concrete-Filled Tubes without Axial Loads", Journal of Structural Engineering, 2010, 1401-12.
[15]  ACI Committee 211.1-91. "Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete", ACI manual of concrete practice, part 1. Michigan (USA): American concrete institute, 2000. 38.
[16]  Deng, Y., Tuan, C. Y., Zhou, Q., Xiao, Y., "Flexural Strength Analysis of Non-Post-Tensioned And Post-Tensioned Concrete-Filled Circular Steel Tubes", journal of Constructional Steel Research 67 2011, 192-202.
[17]  Tomii, M., Sakino, K., "Elasto-Plastic Behavior of Concrete Filled Square Steel Tubular Beam-Columns", Transactions of Architectural Institute of Japan 1979, 280, 111-20.
[18]  Shawkat, W., Fahmy, W., Fam, A., "Cracking Patterns and Strength of CFT Beams under Different Moment Gradients", Composite Structures 84, 2008, 159-166.
[19]  Knowles, R. B., Park R., "Strength of Concrete Filled Steel Tubular Columns", Journal of Structural Division, ASCE 1969, 95 1565-1587.
[20]  Mei, H., Kiiousis, P. D., Ehsani, M. R. Saadatmanesh, H., "Confinement Effects خn High Strength Concrete", ACI structure journal 2001, 98 (4), 548-553
[21]  Christopher, Y., Tuan, M., "Flexural Behavior of Nonposttensioned and Posttendsioned Concrete-filled Circular Steel Tubes", Journal of Structural Engineering, 2008, 1057-60.
[22]  Furlong, R. W., "Strength of Steel-Encased Concrete Beam-Columns", Journal of Structural Division, ASCE 1967; 93 (ST5), 113-24.
[23]  Gardner, J., Jacobson, R., "Structural Behavior of Concrete Filled Steel Tubes", ACI Journal of Structural Division 1967, 64-38:404-13.
[24]  Ge, H. B., Usami, T., "Strength Analysis of Concrete-Filled Thin-Walled Steel Box Columns", Journal of Constructional Steel Research 1994; 30: 607-12.
[25]  Han, L. H., "Concrete Filled Steel Tubular Structures", Peking, China: China Science Press; 2000 [in Chinese].
[26]  Han, L. H., "Tests on Stub Columns of Concrete-Filled RHS Sections", Journal of Constructional Steel Research- an International Journal 2002; 58 (3), 353-72.
[27]  Kato, B. "Column Curves of Steel-Concrete Composite Concrete Columns", Research Report No. 1/97, School of Civil Engineering, University of Technology Western Australia, 1997.
[28]  Kilpatrick, A. E., Rangan, B. V., "Tests on High-Strength Composite Concrete Columns", Research Report No. 1/97, School of Civil Engineering, University of Technology Western Australia, 1997.
[29]  Matsui, C., Tsuda K., Ishibashi Y., "Slender Concrete Filled Steel Tubular Columns under Combined Compression and Bending", Structural Steel, PSSC95, Fourth Pacific Structural Steel Conference, Steel-concrete composite structures, vol. 3. 1995, p.29-36.
[30]  O Shea, M. D., Bridge, R. Q., "Behavior of Thin-Walled Box Sections with Lateral Restraint", Department of Civil Engineering Research, The University of Sydney, report No. R. 739, 1997.
[31]  Prion, H. G. L., Boehme, J., "Beam-column behavior of steel tubes filled with high strength concrete", Canadian Journal of Civil Engineering 1994; 21: 207-18.
[32]  Rangan, B. V., Joyce, M., "Strength of Eccentrically Loaded Slender Steel Tubular Columns Filled With High-Strength Concrete", ACI Structural Journal 1991; 89 (6), 676-81.
[33]  Schneider, S. P., "Axially Loaded Concrete-Filled Steel Tubes", Journal of structural Engineering, ASCE 1998; 124 (10), 1125-38.
[34]  Shakir-Khalil, H., Mouli, M., "Further Tests on Concrete-Filled Rectangular Hollow-Section Columns", Structural Engineer 1990; 68 (20), 405-13.
[35]  Tomii, M., Yashimaro, K., Morishita, Y., "Experimental Studies on Concrete Filled Steel Tubular Stub Column under Concentric Loading", Proceedings of the international colloquium on stability of structures under static and dynamic loads. Washington: SSRC/ASCE, 1977, p. 718-41.
[36]  Uy, B., "Strength of Concrete Filled Steel Box Columns Incorporating Local Buckling", Journal of Structural Engineering, ASCE 2000; 126 (3), 341-52.
[37]  Uy, B., "Strength of Short Concrete Filled High Strength Steel Box Columns", Journal of Constructional Steel Research 2001; 57 (2): 113-34.
[38]  Varma, A. H., Ricles, J. M., Sause, R., Lu, L.W., "Seismic Behavior and Modeling of High-Strength Composite Concrete-Filled Steel Tube (CFT) Beam-Columns", Journal of Constructional Steel Research 2002; 58 (5-8), 725-58.
[39]  Wang, Y. C., "Tests on Slender Composite Columns", Journal of Constructional Steel Research 1999, 49, 25-41.
[40]  Han, L. H., Huo J. S., "Concrete-filled HSS Columns after Exposure to ISO-834 Standard Fire", Journal of Structural Engineering, ASCE 2003, 129 (1), 68-78.
[41]  Uy, B., "Concrete-Filled Fabricated Steel Box Columns for Multistory Buildings: Behavior and Design", Progress in Structural Engineering and Materials 1998; 1 (2), 150-8.
[42]  Han, L. H., Yao, Gh., "Effects of Pre-Stress in The Steel Tube On The Behavior of Concrete-Filled Steel Tubular Beam-Columns", China Journal of Civil Engineering 2003; 36 (4), 8-18 [in Chinese].
[43]  Lu, Y. Q., Kennedy, D. J. L., "The Flexural Behavior of Concrete-Filled Hollow Structural Section", Canadian Journal of Civil Engineering 1994, 21 (1): 111-30.
[44]  Elchalakani, M., Zhao, X. L., Grzebieta, R. H., "Concrete-Filled Circular Steel Tubes Subjected to Pure Bending", Journal of Constructional Steel Research 2001, 57 (11), 1141-68.
[45]  Han, L. H., Lu, H., Yao, G. H., Liao, F. Y., "Further Study on the Flexural Behavior of Concrete-Filled Steel Tubes", Journal of Constructional Steel Research 62 2006, 554-565.
[46]  Han, L. H., "Flexural Behavior of Concrete-Filled Steel Tubes", Journal of Constructional Steel Research 60 2004, 313-37.
[47]  Elchalakani, M., Zaho, X. L., Grzebieta, R., "Concrete-Filled Steel Circular Tubes Subjected to Constant Amplitude Cyclic Pure Bending", Engineering Structures 26 2004, 2125-35.
[48]  Liao, F. Y., Han, L. H., He, Sh. H., "Behavior of CFST Short Column and Beam with Initial Concrete Imperfection: Experiments", Journal of Constructional Steel Research 67 2011, 1922-35.
[49]  Uenaka, K., Kitoh, H., "Mechanical Behavior of Concrete Filled Double Skin Tubular Circular Deep Beams", Thin-Walled Structures, 2011, 49 (2), 256-263.
[50]  Kang, J. Y., Choi, E. S., Chin, W. J., Lee, J. W., "Flexural Behavior of Concrete-Filled Steel Tube Members and Its Applications", Steel Structures 7 2007, 319-324.
[51]  Kim, Y. H., You, S. K., Jung, J. H., Yoon, S. J., "Strengthening Effects of the Shear Key on the Flexural Behavior of Concrete Filled Circular Tube", Steel Structures 6 2006, 183-190.
[52]  Hosaka, T., Umehara, T., Nakamura, S., Nishiumi K., "Design and Experiments on a New Railway Bridge System Using Concrete Filled Steel Pipes", ASCCS seminar; concrete filled steel tubes, a comparison of international codes and practice 1997, Innsbruck, Austria: 367-372.
[53]  Nakamura, S., Momiyama, Y., Hosaka, T., Homma, K., "New Technologies of Steel/Concrete Composite Bridges", Journal of civil engineering 2002, 58: 99-130.
[54]  Tomii, M., Sakino, K., "Experimental Studies on the Ultimate Moment of Concrete Filled Square Steel Tubular Beam-Columns", Translation AIJ 1979, 275, 55-65.
[55]  Tuan, C. Y., "Aurora Arch Bridge-Confined Concrete System Speeds Construction of Walkway Span", Concrete International 2004; 26 (4), 64-7.
[56]  Nematzadeh, M., Naghipour, M., "Compressing Fresh Concrete Technique and the Effect of Excess Water Content on Physical-Mechanical Properties of Compressed Concrete", Materials and Design 2012; 37, 256-267.
[57]  Nematzadeh, M., Naghipour, M., "Compressive Strength and Modulus of Elasticity of Freshly Compressed Concrete", Construction and Building Materials 34, 2012, 476-485.
[58]  Naghipour, M., Nematzadeh, M., Jalali, J., Salari, A., Nemati, S. T., "Hardened Density of Freshly Compressed Concrete and Its Effect on Mechanical Properties”, European journal of environment and civil engineering 2015; 19 (6), 733-755.
[59]  Nemati, M., Naghipour, M., Jalali, J., Nematzadeh, M., "Investigate Effective Factors on The Behavior of Concrete Filled Steel Tube Beams", submitted for publication.
[60]  ASTM A370-10, "Standard Test Methods and Definitions for Mechanical Testing of Steel Products", ASTM International, West Conshohocken, PA, 2010, www.astm.org.
[61]  ACI Committee 211.1-91, "Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete", ACI manual of concrete practice, part 1. Michigan (USA): American concrete institute; 2000, P.38.