Estimation of Bridge Pier Scour Using Statistical Methods and Intelligent Algorithms

Authors

1 Faculty of Agriculture, Gonbad Kavoos University

2 Estimation of Bridge Pier Scour Using Statistical Methods and Intelligent Algorithms

Abstract

When a stream is partially obstructed by a bridge pier, the flow pattern around the pier is significantly changed. Changes in flow pattern are the cause scour around piers. Bridge pier scouring estimates, is an important parameter in the design of bridges because inattention to it may cause damage or reduce the life of the bridge [1-4]. The safe and economical design of bridge piers requires accurate prediction of the maximum scour depth around their foundations [5].
Mathematical Principles of SVM is based Russian mathematician researches [6]. Ghazanfari Hashemi and Etemad Shahidi had predicted bridge pier scour using SVM method in a laboratory model. They showed that this method is more accurate than empirical relationship. Although extensive studies have been conducted on the pier scour, but a valid relationship does not exist that gives satisfactory results in different conditions [5].
Bates and Granger is one of the first research works in the field of hybrid approach [7]. Shamseldin et al. was used combination methods such as simple average, weighted average and neural network to predict floods [8].
Studying literature reveals that there is a lack of reliable formulas for prediction of the scour depth to cover different condition. The aim of this study is combination of the various pier scour relationships to predict the scour depth using conventional and intelligent (SVM) methods and combination of effective parameters of this phenomenon.
 

Keywords


[1]        Parola, A. C., Hagerty, D. J., Kamojjala, S., "Highway Infrastructure Damage Caused by the 1993 Upper Mississippi River Basin Flooding", Rep. No. 417, Transportation Research Board, Washington, 1998.
[2]        Richardson, E. V., Davis, S. R., "Evaluating Scour at Bridges", Hydraulic Engineering Circular 18 (HEC-18), U.S. Federal Highway Administration, Washington, 2001.
[3]        Morris, J. L., Pagan-Ortiz, J. E., "Bridge Scour Evaluation Program in the United States", Stream Stability and Scour at Highway Bridges, E.V. Richardson and P.F. Lagasse, eds., ASCE, Reston, 1999, pp 61-70.
[4]        Wardhana, K., Hadipriono, F. C., "Analysis of Recent Bridge Failures in the United States", Journal of Performance of Constructed Facilities, 2003, 17 (3), 144-150.
[5]        Bateni, S. M., Borgheib, S. M., Jeng, D. S., "Neural Network and Neuro-Fuzzy Assessments for Scour Depth Around Bridge Piers", Engineering Applications of Artificial Intelligence, 2007, 20 (3), 401-414.
[6]        Bateni, S. M., Jeng, D. S., Melville, B. W., "Bayesian Neural Networks for Prediction of Equilibrium and Time-Dependent Scour Depth Around Bridge Piers", Advances in Engineering Software, 2007, 38 (2), 102-111.
]7[     ظهیری، ج.، ظهیری، م.، سالاری جزی، م.، "برآورد بیشترین ژرفای آبشستگی در پیرامون پایه­های پل با بهره­وری از شبکه­های وایازی کلی و پرسپترون چند لایه­ای"، فصل­نامه مهندسی منابع آب، 1391، 14 (3)، 51-60.
]8[     روشنگر، ک.، روح­پرور، ب.، "عملکرد سیستم­های فرامدل در تخمین عمق آبشستگی پایه­های پل در خاک­های غیر چسبنده"، نشریه مهندسی عمران و محیط زیست، 1391، 42 (3)، 13-26.
]9[     روشنگر، ک.، روح­پرور، ب.، "ارزیابی عملکرد سیستم­های هوش مصنوعی برای شبیه­سازی آبشستگی پایه­های پل درخاک­های چسبنده"، نشریه دانش آب و خاک، 1392، 23 (3)، 169-182.
[10]     Vapnik, V., "The Nature of Statistical Learning Theory", Springer-Verlag, New York, 1995, pp 113-141.
[11]     Noori, R., Abdoli, M. A., Ameri, A., Jalili-Ghazizade, M., "Prediction of Municipal Solid Waste Generation with Combination of Support Vector Machine and Principal Component Analysis: A Case Study of Mashhad", Environmental Progress & Sustainable Energy, 2009, 28 (2), 249-258.
[12]     Liong, S. Y., Sivapragasam, C., "Flood Stage Forecasting With SVM", Journal of the American Water Resources Association, 2002, 38 (1), 173-186.
[13]     Babovic, V., Keijzer, M., Bundzel, M., "From Global To Local Modelling: A Case Study in Error Correction of Deterministic Models", The Fourth International Conference on Hydroinformatics, Iowa City, US, 2000, pp 45-54.
[14]     Asefa, T., Kemblowski, M. W., "Support Vector Machines Approximation of Flow and Transport Models in Initial Groundwater Contamination Network Design",  Transactions of American Geophysical Union, 2002, 83 (2), 47-59.
]15[    غضنفری هاشمی، س.، اعتماد شهیدی، ا.، "پیش­بینی عمق آبشستگی اطراف پایه پل با استفاده ازماشین­های بردار پشتیبان"، عمران مدرس، 1391، 12 (2)، 23-36.
[16]     Shamseldin, A. Y., O’Connor, K. M., Liang, G. C., "Methods for Combining the Outputs of Different Rainfall-Runoff Models", Journal of Hydrology, 1997, 197 (1-4), 203-229.
[17]     Bates, J. M., Granger, C. W. J., "The Combination of Forecasts", Operations Research Quarterly, 1969, 20 (4), 451-468.
[18]     Firat, M., Gungor, M., "Generalized Regression Neural Networks and Feed Forward Neural Networks for Prediction of Scour Depth Around Bridge Piers", Advances in Engineering Software, 2009, 40 (8), 731-737.
[19]     Granger, C. W. J., Terasvirta, T., "Experiments in Modeling Nonlinear Relationships Between Time Series", In Casdagli M and Eubank S (Eds.), "Nonlinear Modeling and Forecasting", Redwood City, CA: Addison-Wesley, 1992.
[20]     Lebaron, B., "Nonlinear Forecasts for the S and P Stock Index", In Casdagli M and Eubank S (Eds.), Nonlinear Modeling and Forecasting. Redwood City, CA: Addison-Wesley, 1992.
[21]     Batchelor, R., Dua, P., "Forecaster Diversity and the Benefits of Combining Forecasts", Management Science, 1995, 41 (1), 68-75.
[22]     Yip, D. H. F., Hines, E. L., Yu, W. H., "Application of Artificial Neural Networks in Sales Forecasting", International Conference on Neural Networks (ICNN ’97), Houston, 1997, pp 2121-2124.
[23]     Thiesing, F. M., Vornberger, O., "Sales Forecasting Using Neural Networks", International Conference on Neural Networks (ICNN ’97), Houston, 1997, pp 2125-2128.
[24]     See, L., Openshaw, S. A., "Hybrid Multi-Model Approach to River Level Forecasting", Hydrological Sciences Journal, 2000, 45 (4), 523-536.
[25]     Nasseri, M., Zahraie, B., Ajami, N. K., Solomatine, D. P., "Monthly Water Balance Modeling: Probabilistic, Possibilistic and Hybrid Methods for Model Combination and Ensemble Simulation", Journal of Hydrology, 2014, 511, 675-691.
[26]     Zhao, W., Wang, J., Lu, H., "Combining Forecasts of Electricity Consumption in China Withtime-Varying Weights Updated by a High-Order Markov Chain Model", Omega, 2014, 45, 80-91.
[27]     Laursen, E. M., Toch, A., "Scour Around Bridge Piers and Abutments", Bulletin No. 4, Iowa Highway Research Board, Ames, Iowa, US, 1956.
[28]     Shen, H. W., Schneider, V. R., Karaki, S., "Local Scour around Bridge Piers", Journal of the Hydraulics Division, ASCE, 1969, 95, 1919-1940.
[29]     Shen, H. W., "River Mechanics", Colorado State University, Fort Collins", CO, 1971.
[30]     Hancu, S., "Sur Le Calcul Des Affouillements Locaux Dams La Zone Des Piles Des Ponts", Proceedings of 14th IAHR Congress, Paris, France, vol. 3, International Association for Hydraulic Research, Delft, The Netherlands, 1971, pp 299-313.
[31]     Breusers, H. N. C., Nicollet, G., Shen, H. W., "Local Scour around Cylindrical Piers", Journal of Hydraulic Research, 1977, 15 (3), 211-52.
[32]     Froehlich, D. C., "Analysis of Onsite Measurements of Scour at Piers", National Conference on Hydraulic Engineering, Colorado Springs, CO, US, 1988.
[33]     Fischenich, C., Landers, M., "Computing Scour. EMRRP Technical Notes Collection (ERDC TN-EMRRP-SR-05)", US Army Engineer Research and Development Center, Vicksburg, US, 1999.
[34]     Froehlich, D. C., "Upper Confidence Limit of Local Pier-Scour Predictions", Proceedings of Third Bridge Engineering Conference, Denver, Colorado, US, 1991.
[35]     Blench, T., "Discussion of Scour at Bridge Crossings, by E. M. Laursen", Transactions of American Society of Civil Engineers, 1962, 127, 180-183.
[36]     Breusers, H. N. C., "Scour around Drilling Platforms", Bulletin of Hydraulic Research, 1965, 19, 276-283.
[37]     Chitale, S. V., "Scour at Bridge Crossings", Transactions of the American Society of Civil Engineers, 1962, 127, 191-196.
[38]     Inglis, S. C., "Maximum Depth of Scour at Heads of Guide Banks and Groynes, Pier Noses, and Downstream of Bridges", The Behavior and Control Of Rivers and Canals: Poona, India, 1949.
[39]     Neill, C. R., "Riverbed Scour-A Review for Engineers: Ottawa, Canada", Canadian Good Roads Association Technical Publication No. 23, 1964.
[40]     Melville, M. W., "Local Scour at Bridge Sites: New Zealand, University of Auckland", School of Engineering, Project Report No. 117, 1975.
[41]     Lee, S. O., Sturm, T. W., "Effect of Sediment Size Scaling on Physical Modeling of Bridge Pier Scour", Journal of Hydraulic Engineering, 2009, 135 (10), 793-802.
[42]     Melville, B. W., Coleman, S. E., "Bridge Scour", Water Resources Publications, Littleton, Co, 2000.
[43]     Melville, B., "Pier and Abutment Scour: Integrated Approach", Journal of Hydraulic Engineering, 1997, 123 (2), 125-136.
[44]     Melville, B., Sutherland, A., "Design Method for Local Scour at Bridge Piers", Journal of Hydraulic Engineering, 1988, 114 (10), 1210-1226.
[45]     Noori, R., Karbassi, A. R., Moghaddamnia, A., Han, D., Zokaei-Ashtiani, M. H., Farokhnia, A., Ghafari Gousheh, M., "Assessment of Input Variables Determination on the SVM Model Performance Using PCA, Gamma Test and Forward Selection Techniques for Monthly Stream Flow Prediction", Journal of Hydrology, 2001, 401 (3-4), 177-189.
[46]     Dibike, Y. B., Velickov, S., Solomatine, D., Abbott, M. B., "Model Induction with Support Vector Machines: Introduction and Applications", Journal of Computing in Civil Engineering, 2001, 15 (3), 208-216.
[47]     Han, D., Chan, L., Zhu, N., "Flood Forecasting Using Support Vector Machines", Journal of Hydroinformatics, 2007, 9 (3), 267-276.
[48]     Wang, W. J., Xu, Z. B., Lu, W. Z., Zhang, X. Y., "Determination of the Spread Parameter in the Gaussian Kernel for Classification and Regression", Neurocomputing, 2003, 55 (3-4), 643-663