Thermo-Mechanical Behavior Analysis of Heat Exchanger Piles by Numerical Modelling

Authors

1 Faculty of Engineering, Shahid Madani University of Azerbaijan, Tabriz , Iran

2 Faculty of Engineering, Shahid Madani University of Azerbaijan, Tabriz Iran

Abstract

Using renewable energy sources instead of fossil fuels is a fundamental way to reduce environmental pollution caused by greenhouse gases. Geothermal energy is available all over the world and has an important role in the supply of renewable energy. In order to collect geothermal energy various heat exchanger systems have been developed in recent years that thermal activated piles (energy piles) are one most of them. Reinforced concrete piles have been widely used as a geothermal heat exchanger to access the relatively constant temperature of the ground for efficient heating and cooling of buildings. Energy piles are heat capacity systems that have been increasingly exploited to provide both supplies of energy and structural support to civil structures (Batini et al., 2015). Concrete has a good thermal conductivity and thermal storage capacity, which makes it an ideal medium as an energy absorber (heat exchanger). To use these properties for energy foundations, high-density polyethylene plastic pipes have to be installed within the concrete. The plastic piping can be fixed to the reinforcement cages of the energy foundation in a plant or on the site (Fig. 1).

Keywords

Main Subjects


احمدی م م، کشمیری ا، "مقایسه آیین ­نامه ­های مختلف برای تعیین ظرفیت باربری محوری شمع‌ها"، مهندسی عمران شریف، 1395، 32 (2)، 131-138.
رزم­خواه شربیانی ط، "آنالیز عددی حرارتی- مکانیکی شمع ­های حرارتی به­ صورت تکی و در گروه شمع"، پایاننامه کارشناسی ارشد، دانشگاه صنعتی شریف، 1395.
شوش ­پاشا ع، سعیدی ب، "ارزیابی مقاومت اصطکاکی شمع و پارامتر‌های مؤثر بر آن در خاک ماسه‌ای با استفاده از آزمایش بارگذاری"، نشریه مهندسی عمران و محیط زیست دانشگاه تبریز، 1395، 46 (3)، 39-50.
https://doi.org/10.22034/JCEE.2019.9256
مکارچیان م، متینی ع، قلی­پور س، "بررسی آزمایشگاهی رفتار بار- تغییرمکان شمع‌های‌ پافیلی تحت بارهای کششی مایل در خاک ماسه‌ای"، نشریه مهندسی عمران و محیط زیست دانشگاه تبریز، 1400، 51 (1)، 99-109.
https://doi.org/10.22034/JCEE.2019.9253
Akrouch GA, “Energy piles in cooling dominated climates”, Ph.D. Thesis, Texas A&M University, USA 2014.
Assuncao RM, “Thermal and thermal-mechanical analysis of thermo-active pile foundations”, PhD diss, MSc thesis, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal, 2014.
Batini N, Rotta Loria A, Conti P, Testi D, Grassi W, Laloui L, “Energy and geotechnical behavior of energy piles for different design solutions”, Applied Thermal Engineering, 2015, 86, 199-213. https://doi.org/10.1016/j.applthermaleng.2015.04.050.
Brandl H, “Energy foundations and other thermo-active ground structures”, Geotechnique, 2006, 56 (2), 81-122. https://doi.org/10.1680/geot.2006.56.2.81.
Bowles JE, “Foundation analysis and design”, McGraw-Hill Co, 4th Edn, NewYork, USA, 1999.
Dubey AA, Kumar S, “Assessment of stress-strain behavior of energy piles installed in sand”, International Journal, 2017, 12 (31), 112-120. http://dx.doi.org/10.21660/2017.31.6538
Gashti EHN, Malaska M, Kujala K, “Evaluation of thermo-mechanical behaviour of composite energy piles during heating/cooling operations”, engineering structures, 2014, 75, 363-373. https://doi.org/10.1016/j.engstruct.2014.06.018.
Gray M, “Analysis of geothermal pile foundations under combined axial and moment loading”, Doctoral dissertation, Washington State University, 2013.
Huang X, Wu Y, Peng H, Hao Y, Lu C, “Thermomechanical behavior of energy pile embedded in sandy soil”, Mathematical Problems in Engineering, 2018, Volume 2018, Article ID 5341642, 11 pages, https://doi.org/10.1155/2018/5341642.
Jeong S, Lim H, Lee JK, Kim, J, “Thermally induced mechanical response of energy piles in axially loaded pile groups”, Applied Thermal Engineering, 2014, 71 (1), 608-615. https://doi.org/10.1016/j.applthermaleng.2014.07.007.
Knellwolf C, Peron H, Laloui L, “Geotechnical analysis of heat exchanger piles”, Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137, 890-902. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000513.
Laloui L, Nuth M, Vulliet L, “Experimental and numerical investigations of the behaviour of a heat exchanger pile”, International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30 (8), 763-781. https://doi.org/10.1016/B978-0-08-100191-2.00016-2.
Lee S, “Energy Piles-Piles as heat exchangers”, Presentation Department of Civil and Environmental Engineering, KAIST, 11th December, 2009.
Loria AFR, Gunawan A, Shi C, Laloui L, Ng CW, “Numerical modelling of energy piles in saturated sand subjected to thermo-mechanical loads”, Geomechanics for Energy and the Environment, 2015, 1,1-15. https://doi.org/10.1016/j.gete.2015.03.002.
Mimouni T, Laloui L, “Towards a secure basis for the design of geothermal piles”, Acta Geotechnica, 2014, 9 (3), 355-366. https://doi.org/10.1007/s11440-013-0245-4.
Ministry of Roads and Urban Development, “The role of new cities in optimizing the country's fuel consumption (housing and energy saving)”, New Towns Organization, Housing Development Office, 2014.
Olgun CG, “Energy piles: background and geotechnical engineering concepts”, In Proceedings of the 16th Annual George F. Sowers Symposium, Atlanta, GA, USA, vol. 7, 2013.
Peron H, Knellwolf C, Laloui L, “A method for the geotechnical design of heat exchanger piles”, Geotechnical Special Publication, ASCE, Geo-Frontiers, 2011, 470-479. https://doi.org/10.1061/41165(397)49.
Qi H, Zhou Y, Zhang ZH, Wang B, Zhang Y, Cui H, Wang X, “Heat transfer performance in energy piles in urban areas: case studies for lambeth college and shell centre UK”, Appl. Sci., 2020, 10, 5974, https://doi.org/10.3390/app10175974.
Saggu R, Chakraborty T, “Cyclic thermo-mechanical analysis of energy piles in sand”, Geotechnical and Geological Engineering, 2015, 33 (2), 321-342. https://doi.org/10.1007/s10706-014-9798-8.
Suryatriyastuti ME, Mroueh H, Burlon S, “Understanding the temperature-induced mechanical behaviour of energy pile foundations”, Renewable and Sustainable Energy Reviews, 2012, 16 (5), 3344-3354. https://doi.org/10.1016/j.rser.2012.02.062.
Tiwari R, Jain S, Chakraborty T, Matsagar V, “Dynamic response of reinforced concrete sacrificial walls under blast loading”, In: Proceedings of the 10th World Congress on Computational Mechanics (WCCM 2012), Sa˜o Paulo, Brazil, July 8=13, 2012.
Yang W, Yang B, Wang F, Jing N, “Numerical evaluations on the effects of thermal properties on the thermo-mechanical behaviour of a phase change concrete energy pile”, Energy and Built Environment, Available online 9 June 2021, https://doi.org/10.1016/j.enbenv.2021.05.008.
Wang D, Lu L, Cui P, “Simulation of thermo-mechanical performance of pile geothermal heat exchanger (PGHE) considering temperature-depend interface behavior”, Applied Thermal Engineering, 2018, 139, 356-366. https://doi.org/10.1016/j.applthermaleng.2018.02.020.
Wang J, Li Z, “Experimental study of thermal response of vertically loaded energy pipe pile”, Sustainability, 2021, 13, 7411. https://doi.org/10.3390/su13137411.
Wang Z, Fang P, Wang K, Zhang R, Li F, “Interactions between energy piles caused by temperature”, Geotechnical Research, 2019, 6 (3), 218-226. https://doi.org/10.1680/jgere.18.00042.