Imperical Coefficient of Discharge Predictor for Morning Glory Spillway with Pyramidal Vortex Breakers Using Physical Model

Authors

1 Department of Agricultural Systems Engineering, Science and Research Branch, Islamic Azad University, Tehran

2 Department of Water Resources Engineering and Management, Shahr-e Qods Branch, Islamic Azad University, Tehran

Abstract

Morning glory spillways are one of dam spillways. This type of spillway is so effective when there is no adequate space to build other types of spillways. The main problem with these spillways is the strong spiral vortices which will reduce efficiency of flood conveyance from the reservoir to downstream. Vortex breakers are attached on the crest spillway to reduce vortex negative functionality and increase efficiency of morning glory spillway and as a result it's discharge coefficient. In the present article, physical model of pyramidal vortex breakers has been undertaken. Number and characteristics of vortex breakers influence on the discharge coefficient of the morning glory spillway have studied. 165 experiments have been conducted in the Hydraulic Laboratory of SRBIAU, Tehran. Applying nonlinear regression analyses, emprical equations were obtained for estimating the discharge coefficient of morning glory spillway with pyramidal vortex breakers. Through comparsion of results of these new predictors and observed data, the determination coefficients of training and testing data was calculated as 0.917 in the crest control and 0.99 in the orifice control, respectively. The sensitivity analysis was also performed to investigate the effect of factors affecting the proposed predictors of the discharge coefficient. Finding show that pyramidal vortex breakers in group of six cause the discharge coefficient to be increased significantly. It is showed that the discharge coefficient due to triangular pyramidal vortex breakers existence is increased 50.97% in crest control and 11.80% in orifice control more than the non-vortex breakers in the morning glory spillway.

Keywords


جمالی امام­قیس ر، نوحانی ا، "تأثیر طول تیغه­های ضد گرداب بر تشکیل جریان­های گردابی در سرریزهای نیلوفری"، اولین کنفرانس ملی مهندسی عمران و توسعه پایـدار ایران، تهران، 1393، 8-1.
نوحانی ا، موسوی جهرمی س ح، "تأثیـر تعداد و ضخامت تیغه­های گرداب­شکن بر روی ضریب تخلیه سرریز نیلوفری"، مجموعه مقالات همایش ملّی علوم آب، خاک، گیاه و مکانیزاسیون کشاورزی، دانشکده کشاورزی، دانشگاه آزاد اسلامی واحد دزفول، 11 تا 12 اسفند، 1388، 7-1.
نوحانی ا، جمالی امام­قیس ر، "بررسی آزمایشگاهی تأثیر شکل تیغه­های ضد گرداب بر راندمان تخلیه سرریزهای نیلوفری"، نشریه آبیاری و زهکشی ایران، 1394، 9 (5)، 749-741.
Anwar H, “Formation of a weak vortex”, Journal of Hydraulic Research, 1966, 4 (1), 1-16.
Anwar HO, Waller JA, Amphlet MB, “Similarity of free-vortex at horizonta l intake”, Journal of Hydraulic Research, 1978, 16 (2), 95-105.
Christodoulou A, Mavrommatis A, Papathanassiadis T, “Experimental study on the effect of piers and boundary proximity on the discharge capacity of a morning glory spillway”, International 1st IAHR European Congress, Scotland, Edinburgh, 2010, 1-6.
Daggett LL, Keulegan GH, “Similitude in free-surface vortex formation”, Journal of Hydraulics Division (ASCE), 1974, 100 (11), 1565-1581.
Fattor CA, Bacchiega JD, “Analysis of instabilities in the change of regime in morning glory spillways”, The 29th International Association of Hydraulic Engineering and Research, Hydraulics of rivers water works and machinery Congress, Theme D, 2001, 1 (1), 656-662.
Jain AK, Ranga Raju KG, Garde RJ, “Vortex formation at vertical pipe intake”, Journal of Hydraulics Division (ASCE), 1978, 104 (10), 1429-1445.
Kabiri-Samani AR, Borghei S, “Effects of anti-vortex plates on air entrainment by free vortex”, Scientia Iranica A, 2013, 20 (2), 251-258.
Kashkoli HA, Mousavi-Jahromi SH, Sedghi H, Aghamajidi R, “Simultaneous Study Effect of Guide Pier and Stepped Chamber on Hydraulic Behavior of Morning Glory Spillway”, World Applied Sciences Journal, 2013, 21 (4), 548-557.
Mousavi SR, Kamanbedast AA, Fathian H, “Experimental investigation of the effect of number of anti-vortex piers on submergence threshold in morning glory spillway with square inlet”, Technical Journal of Engineering and Applied Sciences (TJEAS), 2013, 3 (24), 3534-3540.
Musavi-Jahromi SH, Hajipour G, Eghdam M, “Discharge coefficient in the morning glory spillways due to longitudinal angles of vortex breakers”, Bulletin of Enviroment, Pharmacology and Life Sciences (BEPLS), 2016, 5 (5), 34-41.
Nohani E, “An Experimental study on the effect of vortex breakers on discharge coefficient for the shaft spillways with sharp edge and wide edge”, Journal of Civil Engineering and Urbanism, 2014, 4(5), 546-549.
Odgaard AJ, “Free-surface air core vortex”, Journal of Hydraulic Engineering (ASCE), 1986, 112 (7), 610-620.
Shemshi R, Kabiri-Samani AB, “Swirling flow at vertical shaft spillways with circular piano-key inlets”, Journal of Hydraulic Research, 2017, 55 (2), 248-258.
Suerich-Gulick F, Gaskin SJ, Villeneuve M, Parkinson É, “Free surface intake vortices: Theoretical model and measurements”, Journal of Hydraulic Research, 2014, 52 (4), 502-512.
Sun H, Liu Y, “Theoretical and experimental study on the vortex at hydraulic intakes”, Journal of Hydraulic Research, 2015, 53 (6), 787-796.
Tavana MH, Moosavi-Jahromi SH, Shafai-Bajestan M, Masjedi AR, Sedghi H, “Optimazation of number and direction of vortex breakers in the morning glory spillway using physical mode”, Ecology, Enviroment and Conservation Journal (Eco. Env. & Cons.), 2011, 17 (2), 435-440.
USBR, “Design of small dams”, United States Department of the Interior, United States Government Printing Office, Third Edition, Washington D.C, 1987, 860 p.
Wang Y, Jiang C, Liang D, “Comparison between empirical formulae of intake vortices”, Journal of Hydraulic Research, 2011, 49 (1), 113-116.
Yang J, Liu T, Bottacin-Busolin A, Lin C, “Effects of intake-entrance profiles on free-surface vortices”, Journal of Hydraulic Research, 2014, 52 (4), 523-531.
Yildirim N, Kocabaş F, “Prediction of critical submergence for an intake pipe”, Journal of Hydraulic Research, 2002, 40 (4), 507-518.
Zielinski PB, “Effect of viscosity on vortex orifice flow”, Journal of Hydraulic Division (ASCE), 1968, 94 (3), 745-752.