حبیب زاده ا، غفارزاده ح، "تشخیص خرابی سازه با استفاده از بسته موجک و الگوریتم جنگل تصادفی در سازه آزمایش شده در مرکز تحقیقات لرزه ای دانشگاه بریتیش"، فصلنامه پژوهش های زیرساخت های عمرانی، 1396، 3 (2).
خوشدل س، "آموزش کاربردی نرم افزار SACS و آنالیز و طراحی سکوهای دریایی"، چاپ اول، انتشارات الیاس، 1390.
طاهری ع، فطرتی ع، "تحلیل خستگی قطعی یک سکوی پایه ثابت جکت موجود در خلیج فارس و استفاده از رینگ های سخت کننده برای افزایش عمر اتصالات"، هفتمین همایش بین المللی صنایع فراساحل، 1396.
عسگریان ب، کوزه گر پ، "بررسی اثر انعطاف پذیری اتصال در ارزیابی خستگی در سکوهای ثابت فلزی دریایی"، نشریه سازه و فولاد، 1390، سال پنجم (10).
Abd Alhusein TA, Kadim JA, “Fatigue Analysis of fixed jacket platform using FEM”, International Journal of Scientific & Engineering Research, 2020, 11, 2229-5518.
Ali L, Khan S, Bashmal S, Iqbal N, Dai W, Bai Y, “Fatigue crack monitoring of T-type joints in steel offshore oil and gas jacket platform”, Sensors, 2021, 21 (9), 3294.
https://doi.org/10.3390/s21093294
Amirafshari P, Brenan F, Kolios A, “A fracture mechanics framework for optimising design and inspection of offshore Wind Turbine support structures against fatigue failure”, Wind Energy Science, 2020, 10.5194/wes-2020-65.
https://doi.org/10.5194/wes-6-677-2021
API-recommended Practice 2A-WSD, twenty-first ed., 2000. RP 2A-WSD.
Avendano-Valencia LD, Abdallah I, Chatzi E, “Virtual fatigue diagnostics of wake-affected wind turbine via Gaussian Process Regression”, Renewable Energy, 2021, 170. 10.1016/j.renene.2021.02.003.
https://doi.org/10.1016/j.renene.2021.02.003
Barltrop ND, Adams AJ, “Dynamics of fixed marine structures”, (Vol. 91). Butterworth-Heinemann, 2013.
Bhowmik S, “Life extension of offshore structure using machine learning”, In Offshore Technology ConferenceBrasil.OnePetro,2019.
https://doi.org/10.4043/29759-MS
Correia JA, Correia M, Holm M, Ekeborg J, Lesiuk G, Castro JM, Calçada R, “Evaluation of fatigue design curves for a double-side welded connection used in offshore applications”, In Pressure Vessels and Piping Conference, 2018, 51678, p. V06AT06A028.
https://doi.org/10.1115/PVP2018-85156
Ehsani M, Moghadas Nejad F, Hajikarimi P, “Developing an optimized faulting prediction model in Jointed Plain Concrete Pavement using artificial neural networks and random forest methods”, International Journal of Pavement Engineering, 2022, 1-16.
https://doi.org/10.1080/10298436.2022.2057975
Gan L, Wu H, Zhong Z, “Fatigue life prediction considering mean stress effect based on random forests and kernel extreme learning machine”, International Journal of Fatigue, 2022, 158, 106761.
https://doi.org/10.1016/j.ijfatigue.2022.106761
He Z, Wen X, Liu H, Du J, “A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region”, Journal of Hydrology, 2014, 509, 79-386.
https://doi.org/10.1016/j.jhydrol.2013.11.054
Ibrion M, Paltrinieri N, Nejad A, “Learning from Failures: Accidents of Marine Structures on Norwegian Continental Shelf over 40 Years Time Period”, Engineering Failure Analysis, 2020. 111-104487.
https://doi.org/10.1016/j.engfailanal.2020.104487
Kim B, Kim C, Ha SH, “Multiple Damage Detection of an Offshore Helideck through the Two-Step Artificial Neural Network Based on the Limited Mode Shape Data”, 2021, Sensors, 21 (21), 7357.
https://doi.org/10.3390/s21217357
Li Y, Wang S, Zhang M, Zheng C, “An improved modal strain energy method for damage detection in offshore platform structures”, Journal of Marine Science and Application, 2016, 15 (2), 182-192.
https://doi.org/10.1007/s11804-016-1350-1
Mansouri Nejad N, Beheshti Aval SB, Maldar M, Asgarian B, “A damage detection procedure using two major signal processing techniques with the artificial neural network on a scaled jacket offshore platform”, Advances in Structural Engineering, 2021, 24 (8), 1655-1667.
https://doi.org/10.1177/13694332209816
Rahgozar R, Bitaraf M, “A summary evaluation of output-only damage-sensitive features for structural health monitoring of offshore platforms subjected to ambient loads”, Ocean Engineering, 2022, 266, 112892.
https://doi.org/10.1016/j.oceaneng.2022.112892
Santos F, Noppe N, Weijtjens W, Devriendt C, “Data-driven farm-wide fatigue estimation on jacket-foundation OWTs for multiple SHM setups”, Wind Energy Science, 2022, 7 (1), 299-321.
https://doi.org/10.5194/wes-7-299-2022
Shabakhty N, Haselibozchaloee D, Correia JA, “Investigation on fatigue damage calibration factors in offshore structures”, In Proceedings of the Institution of Civil Engineers-Maritime Engineering, September 2021, 174 (3), 65-80.
https://doi.org/10.1680/jmaen.2020.17
SPD13 Structural Design Basis, Pars Oil and Gas Company, 2011. South Pars Gas Field Development (Phase 13).
Wang S, Liu F, Zhang M, “Modal strain energy based structural damage localization for offshore platform using simulated and measured data”, Journal of Ocean University of China, 2014, 13, 397-406.
https://doi.org/10.1007/s11802-014-2028-4
Wöhler A, “Bericht über die Versuche, welche auf der Königl. Niederschlesisch-Märkischen Eisenbahn mit Apparaten zum Messen der Biegung und Verdrehung von Eisenbahnwagen-Achsen während der Fahrt”, Angestellt Wurden. Zeitschrift für Bauwesen, 1858, 8, 642-652.
Zhang Z, Sun C, Jahangiri V, “Structural damage identification of offshore wind turbines: A two‐step strategy via FE model updating”, Structural Control and Health Monitoring, 2022, 29 (2), e2872.
https://doi.org/10.1002/stc.2872