An optimized stiffened sandwich panel for impact-protective doors

Authors

1 Department of Civil Engineering-Urmia University-Urmia-Iran

2 Department of Civil Engineering-Urmia University- Urmia-Iran

Abstract

Protective steel doors are widely used in buildings due to their high resistance against the impact loads. However, its heavy weight has been always considered as a major drawback for these doors. In this paper, a new optimized stiffened impact-protective steel door incorporating sandwich panel with aluminum foam core (OSSA) is examined. This door consists of two face sheets, main and secondary stiffeners, and aluminum foam as the inner core. In order to optimize the door, at first the rigidity and weight functions of the stiffened steel door were extracted. Then an optimal door weighing 42% less than the primary door was obtained. Due to the high energy absorption capacity of the combined foam core and stiffened steel door structure, the use of aluminum foam core in the optimized steel door was proposed. By doing numerical analysis, and depending on the thickness of the face sheet of OSSA, 20 to 32% reduction in the maximum displacement was observed. The results also showed that, with 67% increase in the peak over pressure, OSSA has kept almost the same maximum displacement as that of the steel door without an aluminum foam. In other words, by using aluminum foam core in the optimized stiffened door, the door will resist 67% more impact load.

Keywords

Main Subjects