Inelastic Displacement Ratio for Degrading SDOF Systems under the Effect of Pulse-like and Non-pulse-like Near-Fault Ground motions

Authors

Faculty of Civil Engineering, Sahand University of Technology, Tabriz, Iran

Abstract

For the seismic evaluation of structures, it is required to determine the inelastic displacement ratio. Indeed, the inelastic displacement ratio is one of the most important coefficients in codes which is used in force-based design method as well as in performance-based seismic engineering (Miranda, 2000a, b). This study attempts to evaluate the inelastic displacement ratio,  for single-degree-of-freedom (SDOF) systems that is defined as follows:

Keywords

Main Subjects


پارسائیان س م، حسینی هاشمی ب، سروقدمقدم ع، "نسبت تغییرمکان غیرالاستیک برای سازه‌های در معرض زلزله‌های پالس ­گونه حوزه نزدیک"، مجله مهندسی عمران مدرس، 1391، 12 (4)، 11-25.
پورشاء م، حبیبی س، "ضریب کاهش مقاومت تسلیم و نسبت جابه­ جایی غیرالاستیک بر اساس زلزله‌های ثبت شده در ایران"، نشریه مهندسی عمران و محیط زیست دانشگاه تبریز، 1398، 49 (3)، 9-22.
https://doi.org/10.22034/CEEJ.2019.9653
حسنی ن، قدرتی امیری غ، برارنیا م، سیناییان ف، "نسبت تغییرمکان غیرالاستیک برای سازه‌های در معرض زلزله‌های پالس‌گونه حوزه نزدیک"، نشریه مهندسی عمران مدرس، 1392، 13 (1)، 15-28.
Adam C, “Global collapse capacity of earthquake excited multi-degree-of-freedom frame structures vulnerable to pdelta effects”, In: Proc. of the Taiwan -Austria Joint Workshop on Computational Mechanics of Materials and Structures, 2008.
Chopra AK, “Dynamics of structures”, 4th Edition, Prentice-Hall International Series in Civil Engineering and Engineering Mechanics, Retrieved from https://books.google.com/books/about/Dynamics_of_Structures.html?id=3cctkgEACAAJ, 2011.
Chopra AK, Chintanapakdee C, “Comparing response of SDF systems to near‐fault and far‐fault earthquake motions in the context of spectral regions”, Earthquake Engineering and Structural Dynamics, 2001, 30 (12), 1769-1789. https://doi.org/10.1002/eqe.92.
FEMA P695, “Quantification of building seismic performance factors". 2009, US Department of Homeland Security, FEMA.
FEMA-356, Federal Emergency Management Agency. Building Seismic Safety Council (BSSC), NEHRP Guidelines for the Seismic Rehabilitation of Buildings, Washington, D.C, 2000.
Ibarra LF, Krawinkler H, “Global collapse of frame structures under seismic excitations”, Pacific Earthquake Engineering Research Center Berkeley, CA, 2005.
Ibarra LF, Medina RA, Krawinkler H, “Hysteretic models that incorporate strength and stiffness deterioration”, Earthquake Engineering and Structural Dynamics, 2005, 34 (12), 1489-1511. https://doi.org/10.1002/eqe.495.
Ji D, Wen W, Zhai C, Lu D, “Inelastic displacement ratios for sdof structures subjected to earthquake-tsunami loadings”, Journal of Earthquake Engineering, 2022, 26 (15), 7768-7786. https://doi.org/10.1080/13632469.2021.1982798.
Khoshnoudian F, Ahmadi E, Abedi Nik F, “Inelastic displacement ratios for soil-structure systems”, Engineering Structures, 2013, 57, 453-464. https://doi.org/10.1016/j.engstruct.2013.09.034.
Li Shuai, Zhang F, Wang J, Alam, MS, Zhang J, “Effects of near-fault motions and artificial pulse-type ground motions on super-span cable-stayed bridge systems”, Journal of Bridge Engineering, 2017, 22 (3). https://doi.org/10.1061/(ASCE)BE.1943-5592.0001008
Li Shuang, Xie L, “Effects of hanging wall and forward directivity in the 1999 Chi-Chi earthquake on inelastic displacement response of structures", Earthquake Engineering and Engineering Vibration, 2007a, 6 (1), 77-84. https://doi.org/10.1007/s11803-007-0617-6
Li Shuang, Xie L L, “Progress and trend on near-field problems in civil engineering”, Acta Seismologica Sinica English Edition, 2007b, 20 (1), 105-114. https://doi.org/10.1007/S11589-007-0105-0.
Lignos DG, Krawinkler H, “Sideway collapse of deteriorating structural system under seismic excitations”, Report 177. Ph. D. Dissertation, John A. Blume Earthquake Engineering Center, Stanford 2009.
Miranda E, “Inelastic displacement ratios for displacement-based earthquake resistant design”, 2000a, Proceedings of the 12th World Conference on Earthquake Engineering.
Miranda E, “Inelastic displacement ratios for structures on firm sites”, Journal of Structural Engineering, 2000b, 126 (10), 1150-1159. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:10(1150).
Motallebi SE, Poursha M, Norouzi A, “Strength reduction factor due to ductility for pulse-like and non-pulse-like ground motions”, Journal of Scientia Iranica (in Press).
Ruiz-García J, Miranda E, “Inelastic displacement ratios for design of structures on soft soils sites”, Journal of Structural Engineering, 2004, 130 (12), 2051-2061.
Ruiz‐García J, Miranda E, “Inelastic displacement ratios for evaluation of existing structures”, Earthquake Engineering and Structural Dynamics, 2003, 32 (8), 1237-1258. https://doi.org/10.1002/eqe.271.
Ruiz‐García J, Miranda E, “Inelastic displacement ratios for evaluation of structures built on soft soil sites”, Earthquake Engineering and Structural Dynamics, 2006, 35 (6), 679-694, https://onlinelibrary.wiley.com/doi/10.1002/eqe.552.
Shahi S, Baker J, “Pulse classifications from nga west2 database”, 2012.
Song J, Rodriguez-Marek A, “Sliding displacement of flexible earth slopes subject to near-fault ground motions”, Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141 (3), 04014110. https://doi.org/10.1061/(asce)gt.1943-5606.0001233
Wen W, Zhai C, Li S, Chang, Z, Xie, L, “Constant damage inelastic displacement ratios for the near-fault pulse-like ground motions”, Engineering Structures, 2014, 59, 599-607. https://doi.org/10.1016/j.engstruct.2013.11.011.
Zhai C, Li S, Xie L, Sun Y, “Study on inelastic displacement ratio spectra for near-fault pulse-type ground motions", Earthquake Engineering and Engineering Vibration, 2007, 6 (4), 351-355.
https://doi.org/10.1007/s11803-007-0755-x.
Zhu R, Guo T, Tesfamariam S, “Inelastic displacement demand for non‐degrading bilinear SDOF oscillators with self-centering viscous-hysteretic devices”, Journal of Building Engineering, 2022, 48, 104010. https://doi.org/https://doi.org/10.1016/j.jobe.2022.104010