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1. Introduction 

In this paper, a new semi-analytical method is developed for analyzing concrete gravity dams in the 
frequency domain. Among different numerical methods, the finite element method (FEM), the boundary 
element method (BEM), and the scaled boundary finite element method (SBFEM) are more popular. BEM 
requires basically reduced surface discretization and may be considered as an appealing alternative to FEM for 
elastodynamic problems but requires fundamental solution of the governing differential equations. Although 
coefficient matrices of BEM are much smaller than those of FEM, they are routinely non-positive definite, non-
symmetric, and fully populated. The SBFEM combines the advantages of the FEM and the BEM. The SBFEM is a 
semi-analytical method for solving partial differential equations by transforming the governing partial 
differential equations to ordinary differential equations. In the SBFEM, similar to the BEM, the boundary of the 
problem’s domain is discretized, while no fundamental solution is required. A modified form of the SBFEM with 
diagonal coefficient matrices has been proposed (Fakharian amd Khodakarami, 2015) for solving 
elastodynamic problems in the time domain. In this study, the semi-analytical approach for solving 
elastodynamic problems in the frequency domain has been applied, the governing equations in local coordinate 
system has been developed and two concrete gravity dams with rigid foundations and empty reservoir have 
been analyzed under the earthquake harmonic load. 

 
2. Methodology 

2.1. Governing equations in global coordinates 

   The equation of motion for elastodynamic problems under earthquake load in a 2D domain is represented as: 
 

(1) 0)(  giij,j uuρσ  
 

Where ijσ shows the stress tensor components, gu refers to ground acceleration, iu  refers to relative 

acceleration of the structure and ρ is the mass density. For a 2D domain in global Cartesian coordinates, Y,Xi   

and YXj , . In the frequency domain, the time derivative of the displacement function, )(tui
 , may be given as:  

 

(2) )tIexp()(û)t(u ii  
 

in which 1I  and )(ˆ iu  indicates the displacement amplitude. Therefore, governing equations in frequency 

domain is formulated as: 
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(3) 022  giij,j ûρωûρωσ̂ 

 

 

 

     Where ω denotes the circular frequency. The present method uses the weak form of the governing equations. 
For this end, Eq. (3) is weighted with an arbitrary weighting function w and integrated over the problem’s 
domain along with applying appropriate BCs. The result may be given by: 
 

(4) 
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Fig. 1. Geometry of a sample 2D bounded domain (Ω) and LCO location in global coordinates 

 

2.2. Geometry modeling 

     In the present method, for a bounded medium, a coordinates-origin (LCO) is chosen from which all 
boundaries of the domain are visible (Fig. 2). A geometry transmission is introduced from global Cartesian 
coordinates (x, y) to local dimensionless coordinates (ξ, η) (Fig. 2). This transmission is obtained by Lagrange 
polynomials as mapping functions (Canuto et al, 2012) as: 
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2.3. Physical modeling 

     In this method, special polynomials N(η) are used as shape functions. Diagonal coefficient matrices will be 
derived by using these shape functions. To this end, the displacement function and its derivatives, across the 
element, are interpolated using polynomials that own two specific characteristics; the shape functions have 
Kronecker Delta property, and their first derivatives are equal to zero at any given control point. 

     For an element by (nη+1) nodes, the shape functions are expressed as a polynomial of degree (2nη+1) as 
(Babaee et al., 2015): 
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Considering Eqs. (2) and (6), the displacement field at any point (ξ, η) and frequency ω is given by 
 

(7)                 Tyx ξ,ωuξ,ωuηNξ,ωuηNξ,η,ωu ˆˆˆˆ  

2.4. Numerical integration 

      In this study, the Gauss-Lobatto-Legendre numerical integration method is applied. This method calculates 
the values of the coefficients matrix and vector that will be appeared in governing equations in local 
coordinates, according to the node element that corresponds to the points and also features a shape function 
used, resulting diagonal matrix of coefficients used in the equation. Weight coefficients used in the method of 
integration is calculated using (Canuto et a, 2012): 
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3. Results and discussion 

3.1. Derivation of governing equations in local coordinates 

The weak form of governing equations (Eq. 4) is derived as Eq. 9 using mapping function (Eq. 5), shape 
function (Eq. 6), and numerical integration (Eq. 8). 
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Where: 
 

(10) )()]([][)]([ 110 2 ii
T

iiijij ηJηBDηBwδD  

(11) )()]([][)]([ 211 2 ii
T
,ηiiijij ηJηBDηBwδD  

(12) )()]([)]([2 ii
T

iiijij ηJηNρηNwδM  

(13) 
 

  )(}ˆ{)]([ˆ 22 ig
T

iiiji
b

i ηJuωρηNwδωF  
 

and Tb
y

b
x

b ωFωFωF ])(ˆ)(ˆ[)(ˆ   are the components of inertial forces caused by foundation excitation in the domain 

of dam body at a frequency ω and ijδ  denotes the Kronecker Delta which results in diagonal coefficient 

matrices. For calculating deformations and stresses at every Degree Of Freedom (DOF), the differential 
equation corresponding to the control point related to the DOF should be solved. Analytical solution for 
governing equation for each DOF may be represented as: 
 

(14) 
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in which J(α) (β) and Y(α) (β) indicate respectively the first and second kinds of Bessel functions of order α. 

 
3.2. Numerical examples 

The accuracy of the present method is demonstrated through representative numerical examples. 
Geometry of a concrete gravity dam with rigid foundation duo to harmonic horizontal displacement of ground 
is shown in Fig. 2 and results of the analysis using the present method is shown in Fig. 3. 

  

Fig. 2. Geometry of a concrete gravity dam Fig. 3. Amplitude variations of 
 horizontal displacement of dam crest 
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4. Conclusion 

In this research, a new semi-analytical method with detailed formulation was presented for the analysis of 
2D elastodynamic problems in frequency domain. In this method, only the boundaries of the domains are 
discretized. Using Lagrange polynomials as mapping function, special shape function, Gauss- Lobatto- Legendre 
quadrature, and implementing a weak form of weighted residual method, coefficient matrices of the system 
equations become diagonal. Therefore, the partial differential equation for each DOF becomes independent 
from others. Consequently, this method significantly reduces the computational costs compared to other 
methods. Besides, two examples of empty gravity dam were successfully modeled with very small number of 
DOFs, preserving very high accuracy compared to available solutions. 
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