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1. Introduction 

Achieving efficient methods to protect the structure against forces such as wind and earthquake is one of 
the first steps in the design of structures and has led to the provision of structural control systems. Structural 
control systems include three systems, active control, passive control and semi-active control. (Spencer Jr et al. 
2003), (Mulligan et al. 2007). The outrigger system with the viscous damper, was proposed by, (Gamaliel, 2008) 
and its effect on tall structures was investigated, (O'Neill, 2006) showed that the use of damper and increasing 
damping in the outrigger system in proportion to increasing the stiffness and dimensions of the structure. 
(Farzad et al. 2019) has also used ultrasonic algorithms to determine the optimal position of outrigger system 
in tall steel frames. Experimental and analytical researches also show that the use of outrigger system is 
effective in reducing the lateral displacement of tall structures. (Tan et al. 2012), (Deng et al. 2014). 

(Jovanovich, 2011) Used the Fourier series method in Hilbert space to investigate the transverse vibrations 
of the beam with boundary conditions of linear viscosity. 

In this paper, the vibrations of the structure and the effect of central core system with the damped arm 
brace using axial load (due to the mass of the central mass) in the control of lateral displacement due to 
harmonic loading are investigated. Previous studies have not considered the effect of perimeter columns 
stiffness and the effect of axial force on frequencies and lateral displacement of the structure, and for solving 
the partial differential equation governing the problem, the Fourier series method is used to define the 
differential operator in Hilbert space.  

 

2. Methodology 

2.1. Central core system with outrigger and viscous damper with axial load effect 

 

Fig 1. Central core system with outrigger and viscous damper with axial force effect 
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     Equation (1) is the differential equation of buckling of a console-beam in dynamic mode with axial load effect. 
In relation (1) (t) represents time, (u) is the displacement of the core, q(x,t) is the shear force per unit on the 
core . 

In the equation (1) 𝑘2 =
𝑃

𝑚
 , 𝑐2 =

𝐸𝐼

𝑚
. 

     The boundary conditions of the problem are as follows: 
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     In the equation ℎ1 =
𝑘𝜃

𝐸𝐼
 , ℎ2 =

𝐶𝜃

𝐸𝐼
. ℎ3 =

𝑝

𝐸𝐼
, 𝐶𝜃 = 2𝑟2𝐶𝑑 . 𝐾𝜃 = 2𝑟2𝐾𝑠. According to Riley’s theory: 𝐶𝑑 = 2𝑀𝜔𝜉. 

The initial conditions of the problem are as follows: 
 

𝑢(𝑥. 0) = 𝑓(𝑥).
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     Using the variable separation technique, differential equation (1) is written in the form of equation (4) and 
boundary conditions (2) are written in the form of equation (5). 
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     The roots of the equation (relation (6)) of the linear differential are calculated. 
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     The relation of (7) eigenvectors is a problem and is established for different eigenvalues. 
 

𝜑(𝑥) = 𝐶4(𝐷1𝑒𝑓1𝑥 + 𝐷2𝑒−𝑓1𝑥 + 𝐷3𝑒𝑓2𝑥 + 𝑒−𝑓2𝑥)                                                                                                                            (7) 
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orthogonal operator conjugate in Hilbert space and the principle of interval multiplication of vectors .The 
coefficient 𝐶4 is calculated to calculate eigenvectors for eigenvalue. 
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     Equation (9) is the lateral displacement equation of the central, and the first expression is the response of 
the system to the free vibration of the initial excitation is the response to the forced vibrations due to harmonic 
loading. 
 

𝑢(𝑥. 𝑡) = ∑ {∫ [𝑔(𝜉) + 𝜆𝑟𝑓(𝜉)]
𝐿

0
𝑢1.𝑟(𝜉)𝑑𝜉+∞

𝑟=−∞ }
𝑢1.𝑟(𝑥)𝑒𝜆𝑟𝑡

𝜆𝑟
+ ∑

𝑢1.𝑟(𝑥)

𝜆𝑟
∫ 𝑒𝜆𝑟(𝑡−𝜏)𝑡

0
+∞
𝑟=−∞ ∫ 𝑄(𝜉. 𝜏)𝑢1.𝑟(𝜉)𝑑𝜉𝑑𝜏

𝐿

0
           (9) 

 

3. Results and discussion 

3.1. Investigation of forced vibrations caused by harmonic loading 

Here, by presenting a numerical model, the forced vibrations of a 40-story building and the height of each 
floor are 3 meters, under the harmonic load as follows. 

 

𝑄(𝑥. 𝑡) = 𝐴𝑐𝑜𝑠(𝜛𝑡)𝛿(𝑥 − 𝑥𝑓). 𝐴 = 𝑚 ×
1

2
𝑔. 𝜛 = 3 𝐻𝑧 . 𝑥𝑓 = 20 𝑚                                                                                   (10) 
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3.1.1. Effect of axial load due to mass of central ore and perimeter columns on forced vibrations due to 
harmonic load  

     In this section, the effect of axial force on relative displacement is investigated. The weight force, which 
consists of the central core and the surrounding columns, is calculated in this way and the effect is applied as 
an axial load on the roof on the structure. 

 

Table 1. Model specifications for different outrigger lengths 

For: ξ = 10%. ω = 2.37Hz. m = 23116
kg

m
. M = 32.36 × 105kg 

. p = 3.4947 × 107N 

r = 23.47m r = 16.6m r = 11.76m  

15.36 × 106
Ns

m
 15.36 × 106

Ns

m
 15.36 × 106

Ns

m
 Cd 

169.21 × 108 Nsm 84.65 × 108Nsm 42.48 × 108Nsm Cθ 

0.5 1 2 N =
EcI

2AcEsr2
 

 

 

Fig. 1. Comparative displacement and moment and shear diagrams for damping 10% and flexural ratio N=1 with axial 
force effect 

 

Table 1. Compression of maximum shear and moment and comparative lateral displacement of the structure in axial load 
effect mode under loading  

𝑀𝑚𝑎𝑥 𝑉𝑚𝑎𝑥 𝐷𝑟𝑖𝑓𝑡𝑚𝑎𝑥 For N = 1. 𝜉 = 0.1 

1.869 GN 21.03MN 0.469% No axial load (P=0) 

1.903 GN 21.67MN 0.481% With axial load 

1.79 % 2.95% 2.49 % Percentage difference 

 
According to the above figure and table, it is clear that considering the effect of axial force has increased the 

maximum values of comparative displacement and moment and shear the base of the floors in the building. 
 

4. Conclusions 

The research is based on the analysis of the central core system with outrigger and viscous damper with 
axial force effect base on the Fourier series semi-analytical method, which is defined by the differential 
operator in Hilbert space.  

1) Increasing the arm restraint length, which reduces the stiffness ratio of the central core to the 
surrounding columns, is a good way to reduce and control the relative displacement of the floors. 

2) Applying of axial force (due to the weight of the central core to the surrounding columns) is associated 
with an increase in the imaginary part of the system mode frequencies. 
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3) Applying of axial force in the relevant equation has caused a difference of 2.5% relative lateral 
displacement of the floors and 3 % in the base shear and 2% in the base moment under harmonic 
loading  
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