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ABSTRACT: 
With the advancement of intelligent computing systems in recent decades, the optimization process of 
structures has been significantly improved. These systems provide accurate and fast analysis of complex 
structures and enable engineers to use more advanced and effective methods in the design and 
optimization of structures. This ability enables them to obtain optimal solutions in the shortest possible 
time by analyzing large and complex data. Thus, using intelligent computing systems accelerates and 
improves the accuracy of structural optimization. The main concern of this study is to investigate the 
applicability of the Artificial Rabbits Optimization (ARO) algorithm, as one of the recently developed 
metaheuristic algorithms, in the design optimization of large-scale frame structures. For numerical 
purposes, three frame structures are selected with different characteristics, an 8-story, single bay frame 
structure; a 15-story, 3-bay benchmark frame structure; and a 24-story, 3-bay frame structure. In order 
to improve the overall computational performance of the standard ARO algorithm, an enhanced version 
of this algorithm is proposed as I-ARO by using the Diagonal Linear Uniform (DLU) initialization process 
instead of the conventional Brownian random initialization scheme. By comparing the results of I-ARO 
with those of other approaches in the literature, it can be concluded that the DLU process significantly 
upgrades the optimization capability of the standard ARO algorithm, such that the improved algorithm 
provides lower structural weight in the considered design examples. 

KEYWORDS: 
Optimum design, Improved artificial rabbits optimization, Diagonal linear uniform initialization, Large-
scale, Frame structure. 

 

1. Introduction 

Reducing building weight is a multi-dimensional 
endeavor that requires smart design decisions and 
comprehensive approaches. By using lightweight 
materials, innovative construction techniques, 
optimization algorithms, and sustainable practices, 
experts can create more efficient and sustainable 
buildings. Reducing building weight offers 
opportunities to improve construction practices, 
increase stability, and enhance structural efficiency. 
As the construction industry moves toward more 
environmentally friendly and resource-efficient 
solutions, professionals are tasked with exploring 

innovative ways to achieve these goals. One of the 
primary approaches to reducing building weight is 
the use of lightweight materials such as composite 
products in the structure. Modification of 
conventional construction processes can result in 
significant weight reduction. Strategic spatial 
planning is very important in reducing building 
weight while maintaining performance. Efficiently 
designing layouts that maximize usable space 
eliminates unnecessary construction, resulting in 
lighter structures. Integrating energy-efficient 
systems into buildings not only reduces operating 
costs but also helps reduce overall weight. Installing 
smart technologies, such as energy-efficient lighting 
and air conditioning systems, eliminates the need 
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for excessive structural support. These systems 
enable lighter load-bearing elements and minimize 
construction materials. 

In the domain of sustainable and efficient 
building construction, recent literature underscores 
a multifaceted approach to reducing building 
weight through the utilization of lightweight 
materials, advanced construction techniques, and 
integration of energy-efficient systems. Choi et al. 
(2016) developed a sustainable design model for 
composite structures, highlighting the potential for 
CO2 reduction by optimizing material combinations.  

Arkar et al. (2018) demonstrated the 
development of a composite timber facade wall that 
balances energy efficiency with dynamic thermal 
properties using advanced insulating technologies. 
Fadai and Winter (2017) explored wood lightweight 
concrete composites, advocating for resource-
efficient construction methods that leverage 
renewable resources. Block et al. (2017) 
investigated the application of lightweight 
construction and adaptive energy systems in 
experimental buildings to enhance lifecycle energy 
efficiency.  

Novais et al. (2020) reported on bi-layered 
porous/cork-containing waste-based inorganic 
polymer composites as a novel approach to 
improving building energy efficiency through 
material innovation. Chwieduk (2003) emphasized 
the potential for significant energy savings in 
residential and tertiary sectors through the 
adoption of sustainable building practices. Shoubi et 
al. (2015) assessed the use of Building Information 
Modeling (BIM) tools to identify material 
combinations that minimize operational energy 
consumption.  

Rohracher (2001) discussed the socio-technical 
challenges in transitioning to sustainable 
construction technologies, highlighting the need for 
integrating social and technical considerations. 
Borbon-Almada et al. (2019) evaluated the energy 
and economic impacts of integrating low-cost 
lightweight materials in housing, demonstrating 
significant reductions in energy demand and CO2 
emissions.  

Herrmann et al. (2018) reviewed the life cycle 
engineering of lightweight structures, underscoring 
the trade-offs and methodological challenges in 
evaluating their environmental benefits. The use of 
optimization and engineering algorithms is one of 
the promising ways to reduce building weight. The 
implementation of simulation and modeling tools 
provides the possibility of examining different 
design possibilities and identifying optimal 
solutions. These algorithms optimize building 
structures by analyzing loads, form, and 
distribution of materials, which leads to significant 
weight reduction. Achieving weight reduction 
requires optimizing the use of structural elements. 
The use of advanced structural analysis techniques 
can accurately determine the optimal size and 

position of beams, columns, and trusses. Avoiding 
excessive dimensions ensures the efficient use of 
the building profile and reduces the overall weight. 
The integration of optimization algorithms and 
engineering techniques into building design 
processes has been a focal point of recent research, 
aimed at reducing structural weight while 
enhancing sustainability and efficiency. Studies 
have demonstrated the effectiveness of 
metaheuristic algorithms, including genetic 
algorithms and biogeography-based optimization, 
in identifying optimal structural configurations that 
contribute significantly to weight reduction (Saka, 
2016; Çarbaş, 2017). Tools that couple genetic 
algorithms with building energy simulations enable 
the optimization of building shapes and envelope 
features, optimizing energy use and reducing 
weight (Tuhus, 2010). Multi-objective 
metaheuristics facilitate the optimization of 
conflicting objectives, such as weight reduction and 
increased robustness, demonstrating their 
applicability in real-world structural design (Zavala 
et al., 2016). The adoption of metaheuristic 
optimization for seismic design illustrates the 
algorithms' capability to minimize both structural 
cost and ductility demand (Talatahari, 2013).  

Strategies like the upper bound strategy 
enhance computational efficiency in metaheuristic-
based optimization, offering potential for significant 
time and resource savings (Azad et al., 2013). 
Guided and hybrid metaheuristic algorithms, 
incorporating design-oriented strategies, have 
shown promise in optimizing steel truss structures 
(Azad et al., 2017).  

Advanced metaheuristics, such as teaching-
learning-based optimization, effectively optimize 
timber structures under fire, adapting to specific 
design contexts (Ulusoy, 2022). Game theory-based 
metaheuristics and the development of general-
purpose computing platforms for structural design 
optimization further underscore the field's 
evolution, showcasing the adaptability and 
effectiveness of these algorithms in complex design 
scenarios (Mahjoubi et al., 2021; Lagaros, 2014).  

The hyper-heuristic approach effectively 
customizes metaheuristics for engineering 
problems by selecting optimal operators and 
parameters. It outperforms standard algorithms 
like PSO, GA, and Cuckoo Search with faster 
convergence and better solutions (Zambrano, 
2023).  

The improved multi-objective algorithm 
IBMSMA, using a chaotic grouping mechanism and 
dynamic strategies, has achieved better 
convergence and diversity in truss structure 
optimization compared to other advanced 
algorithms. This algorithm has demonstrated high 
efficiency in solving large-scale engineering 
problems. (Yin et al., 2023). The application of the 
Improved Prairie Dog Optimization (I-PDO) 
algorithm for seismic optimization of steel mega-
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braced frames demonstrates its effectiveness in 
enhancing structural stiffness and stability while 
optimizing bracing topology and size. This 
metaheuristic approach outperforms conventional 
methods by efficiently minimizing structural costs 
and improving seismic performance in tall building 
designs (Payami Far et al 2024). 

The investigations of Saka et al. in 2024 cover a 
review of algorithms developed for the optimum 
design of steel skeletal structures, from the first 
article published in 1960 up to the present date. 
Collectively, this body of research highlights the 
transformative potential of computational 
algorithms and engineering principles in advancing 
sustainable, efficient, and cost-effective building 
designs. Building upon the previously highlighted 
research, additional studies emphasize the critical 
role and evolving application of optimization 
algorithms and engineering techniques in structural 
design (Kashani et al., 2021; Kiani, 2016). 

These studies expand upon the use of 
metaheuristic algorithms and their integration with 
engineering principles, demonstrating a broadened 
scope of application and innovation in tackling 
structural optimization challenges (Greiner, 2013; 
Lagaros, 2012; Prayogo, 2022).  

These additional references not only reinforce 
the significance of metaheuristic algorithms and 
advanced simulation tools in structural 
optimization but also highlight the evolving nature 
of these technologies. Through the integration of 
computational intelligence and engineering 
expertise, the potential for achieving more 
sustainable, efficient, and cost-effective designs in 
structural engineering is increasingly realized 
(Lagaros et al. 2012; Prayogo, 2012).  

This paper primarily focuses on examining the 
effectiveness of the Artificial Rabbits Optimization 
(ARO) algorithm (Wang et al., 2022), a newly 
developed metaheuristic algorithm, in optimizing 
the design of large-scale frame structures. Three 
different frame structures are chosen for analysis, 
ranging from an 8-story single bay planar structure 
to a 24-story, 3-bay frame structure, each with 
distinct characteristics. To enhance the 
computational performance of the standard ARO 
algorithm, an improved version called I-ARO is 
introduced. This enhancement involves employing 
the Diagonal Linear Uniform (DLU) (Li et al., 2021) 
initialization process instead of the conventional 
Brownian random initialization scheme. The 
comparison of results between I-ARO and other 
methods from existing literature suggests that 
implementing the DLU process notably enhances 
the optimization capability of the standard ARO 
algorithm. This enhancement leads to lower 
structural weight in the design examples 
considered. 

 

2. Optimization Problem Statement 

This section describes the design optimization 
problem developed for minimizing the weight of 
frame structures, while adhering to the prescribed 
design constraints outlined in the relevant codes 
and standards. The primary goal is to minimize the 
overall weight of the structure, and discrete design 
variables are used to assign predefined design 
sections to the structural elements during the 
optimization process. Mathematically, the solution 
method for the developed problem is presented as 
follows: 
 

ܹ݁݅݃ℎ(࡭) ݐ = ෍ߩ௜ ௜ܮ  ௜ܣ 

௘

௜ୀଵ

,           ݅ = 1,2, … , ݁.                 (1) 

௠௜௡ߜ ≤ ௜ߜ ≤ ௠௔௫ߜ ,                           ݅ = 1,2, … ,݊.                 (2) 

௠௜௡ߪ ≤ ௜ߪ ≤ ௠௔௫ߪ ,                          ݅ = 1,2, … , ݁.                   (3) 

ܣ ∈ ܵ = , ଶܣ, ଵܣ} …  ௜}                                                          (4)ܣ,

 
Where, ρi represents the density of the material; 

Li signifies the length of the structural elements; A 
denotes a vector containing Ai as the cross-sectional 
area of the design sections e and n stand for the 
overall number of structural elements and nodes in 
the structure; δi and σi denote the nodal 
displacement and stress in the structure 
respectively; and S represents the predefined set of 
discrete cross-sectional areas. 

Given that structural design optimization is a 
constrained optimization problem, it necessitates 
the use of a constraint handling approach to carry 
out the optimization process. To address this, a 
penalty function is established as part of the 
penalty-based constraint handling method 
employed in this study. 
 
௣݂௘௡௔௟௧௬(ܣ) = (1 + ଵߝ ఌమ (ݒ.  (5)                        (ܣ) ℎݐܹ݃݅݁×

ݒ = ෍݉ܽݔ{0,݃௜(ܣ)}
௤

௜ୀଵ

                                                             (6) 

 

In this context, v is the aggregate of violated 
design constraints; gi (A) signifies the ith design 
constraint; q stands for the total count of design 
constraints; and ε1 and ε2 are control parameters 
used to determine the penalty during the 
optimization process. 

3. Artificial Rabbits Optimization (ARO) 
Algorithm 

The inspiration behind the ARO algorithm is 
inspired by the survival tactics of rabbits in their 
natural environment. These strategies have evolved 
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over time to help rabbits evade predators. One 
notable tactic involves avoiding feeding near their 
nests to prevent detection by predators. Instead, 
rabbits venture farther away to forage, using their 
wide field of vision to scan the surroundings. 
Another survival strategy employed by rabbits is 
the random selection of shelters. To evade 
predators or hunters, rabbits construct multiple 
burrows around their nest and randomly select one 
as a refuge (Fig. 1). 

 

 
 

Fig. 1. Nests and a Rabbit in the nature 
(Wang et al., 2022) 

 

Their physical characteristics, such as short 
forelegs and elongated hind legs, along with robust 
muscles and tendons, enable them to sprint at high 
speeds.  These strategies are incorporated into the 
ARO algorithm: the latter tactic influences the 
exploitation phase in the main search loop, while 
the former guides the exploration phase. 

During the initial stage of the ARO algorithm, a 
random initialization process is performed to 
establish the initial positions of the search agents as 
follows: 
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,    ൜݅ = 1,2, … ,݊.
݆ = 1,2, … ,݀.       (7) 

௜ݔ
௝ = ௜,௠௜௡ݔ

௝ + .݀݊ܽݎ ൫ݔ௜,௠௔௫
௝ − ௜,௠௜௡ݔ

௝ ൯  ൜݅ = 1, … ,݊.
݆ = 1, … ,݀.       (8) 

 
Where xi is position vector of the ith rabbit; n and 

d refer to the rabbits’ total population and 
dimension of the optimization problem 
respectively; xji,max and xji,min relates to the upper and 
lower bounds of the optimization variables; rand 
denotes to a random number in the range of 0 and 
1. The core mechanism of the ARO algorithm is 
based on two survival strategies observed in 
rabbits: detour foraging, utilized for the exploration 
phase, and random hiding behavior, employed for 
the exploitation phase. Each rabbit in the swarm is 

allocated its own territory, which comprises 
patches of grass and multiple burrows. During 
foraging, rabbits randomly visit the positions of 
other rabbits in the swarm and maneuver around 
food sources, introducing perturbations to their 
movements to ensure efficient food gathering. 

Mathematically, this detour foraging behavior in 
ARO is represented by each search individual 
adjusting its position towards another randomly 
selected search individual within the swarm, while 
incorporating perturbations into its movements. 
The mathematical model of this phase in the ARO 
algorithm is formulated as follows: 
 
+ݐ)௜ݒ 1) = (ݐ)௝ݔ + ܴ. ቀݔ௜(ݐ)− ቁ(ݐ)௝ݔ

+ ൫0.5(0.05݀݊ݑ݋ݎ +  ;  ଵ)൯ ݊ଵݎ

݅ = 1,2, … ,݊.                                                                               (9) 

ܴ =  (10)                                                                                       ܿ.ܮ

ܮ = ൬݁ − ݁(௧ିଵ் )మ൰ . sin (2ݎߨଶ)                                              (11) 

݂݅ ݇ = (݇)ܿ ℎ݁݊ݐ (݈)݃ = (݇)ܿ ݁ݏ݈݁  1 = 0  ;       ݇=1, … ,  ݀

 (12)                                                                           ⌈݀ ⋅ 3ݎ⌉ ,… ,1=݈

 (13)                                                                     (݀)݉ݎ݁݌݀݊ܽݎ=݃

݊1∼ܰ (0, 1)                                                                               (14) 

Where v(t+1) denotes new position of the ith 
rabbit; T is the total number of optimization 
iterations; xi(t) and xj(t) denote the ith and jth rabbits’ 
position at current iteration; randperm generates 
integer random numbers between 1 and d; 2ݎ ,1ݎ, 
and 3ݎ refers to random numbers of range 0 and 1. 

Fig. 2 illustrates the fluctuation of the running 
length (L) in rabbits, representing the distance 
traveled during detour foraging. Meanwhile, Fig. 3 
displays the variation of R as a running operator, 
depicted following a standard normal distribution. 

To evade predators during the exploitation 
phase, a burrow creation process is carried out, 
modeled by generating d new vectors around the 
current position of the rabbits. The rabbits then 
randomly select one of these burrows to reduce the 
risk of predation. The equation below describes the 
generation of the jth burrow for the ith rabbit: 

 

௜ܾ,௝(ݐ) = (ݐ)௜ݔ .݃.ܪ+ ൜݅          ,(ݐ)௜ݔ = 1,2, … ,݊.
݆ = 1,2, … ,݀.            (15) 

ܪ =
ܶ − ݐ + 1

ܶ  .  ସ                                                                   (16)ݎ

n2∼N (0,1)                                                                                (17) 

݂݅ ݇ = (݇)݃ ℎ݁݊ݐ     ݆ = (݇)݃ ݁ݏ݈݁    , 1 = 0  ; 

݇=1, …, ݀                                                                                                                              (18) 
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Fig. 2. Variation of L values over time 
 

 
Fig. 3. Variation of R values over time 

 

Where H refers to a parameter which denotes on 
hiding with a linear decrease from 1st iteration to 
Tth iteration. Based on the earlier description of 
rabbits' natural behavior, where they often face 
threats from pursuing predators, they prioritize 
finding a secure hiding place. Consequently, they 
typically choose one of their available burrows at 
random to seek sanctuary and evade capture. To 
mathematically model this random hiding behavior, 
the following equations are employed: 

 
+ݐ)௜ݒ 1) = (ݐ)௜ݔ + ܴ. ൫ݎସ . ௜ܾ(ݐ)− ,൯(ݐ)௜ݔ

݅ = 1, … ,݊                                             (19) 

௜ܾ,௥(ݐ) = (ݐ)௜ݔ + ௥݃.ܪ ൜݅          ,(ݐ)௜ݔ. = 1,2, … ,݊.
݆ = 1,2, … ,݀.          (20) 

݂݅ ݇ = ⋅ 5ݎ⌉ (݇)݃ ℎ݁݊ݐ     ⌈݀  = (݇)݃ ݁ݏ݈݁    , 1 = 0  ; 

݇=1, …, ݀                                                                                    (21) 

 
Where bi,r is the burrow which is selected 

randomly for hiding; 4ݎ and 5ݎ are randomly 
generated numbers in the range of (0, 1). The 
process of updating the positions of rabbits after 
executing the procedures for both exploration and 
exploitation phases is managed in the following 
manner: 
 
+ݐ)௜ݔ 1)

= ൜ݔ௜
((ݐ)௜ݔ)݂              (ݐ) ≤ +ݐ)௜ݒ)݂ 1))

+ݐ)௜ݒ ((ݐ)௜ݔ)݂     (1 > +ݐ)௜ݒ)݂ 1))                            (22) 

In the ARO algorithm, the transition between the 
exploration and exploitation phases is represented 
as energy shrink (refer to Fig. 4), wherein a gradual 
shift is achieved through the following equation: 
 
A(t)=4(1-t/T) ln1/r                                                                (23) 

Where r is a randomly generated number in the 
range of 0 and 1; t is the current iteration and T is 
the maximum number of considered iterations. Fig. 
5 depict the pseudocode and the flowchart of the 
ARO algorithm, respectively. 
 

 
Fig. 4. Conducting energy shrink behavior by 

rabbits 
 

4. Improved ARO (I-ARO) Algorithm 
Random number generation has long been a 

common method for generating new solution 
candidates in many metaheuristic algorithms. In the 
primary loop of these algorithms, determining the 
initial positions and subsequent movements of 
candidates often involves a randomization process 
based on Brownian motion. However, this approach 
often leads to suboptimal convergence and 
increases the likelihood of getting trapped in local 
optima. 

In the ARO algorithm, Brownian random 
generation is employed at various stages, 
particularly during initialization, where position 
vectors are randomly determined within the upper 
and lower bounds of the variables. The quality of the 
final global optimal solutions and the optimization 
procedure itself are significantly influenced by the 
initialization process. However, the random 
initialization process primarily focuses on the 
diversity and uniformity of the population 
distribution but often neglects the algorithm’s 
update mechanism. There is, therefore, a need to 
develop novel techniques to enhance the 
initialization process of algorithms, thereby 
augmenting their search capability. 
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Fig. 5. Pseudo code and flowchart of the ARO 

algorithm 

To address this, an Improved ARO (I-ARO) is 
proposed in this section, wherein the Brownian 
random initialization process of the ARO is replaced 
by a new initialization scheme known as the 
Diagonal Linear Uniform (DLU) initialization 
process. In the DLU initialization process, the search 
space’s dimensions are initially divided into N−1 
equal parts, and vertices of the diagonal subspace 
are subsequently selected accordingly.  

This entails choosing uniform points along the 
“diagonal” of the space (refer to Fig. 6-a), with the 
total distance between adjacent points calculated as 
(xu-xl)/(N-1), where xu and xl represent the upper 
and lower bounds respectively. For example, if five 
initial individuals are needed in a 3-dimensional 

space defined by upper and lower bound vectors of 
(-2, -2, -2) and (2, 2, 2) respectively, the DLU 
initialization process divides each dimension into 
four parts. The DLU method then selects the five 
initial points as (2, 2, 2), (-2, -2, -2), (1, 1, 1), (0, 0, 0), 
and (-1, -1, -1) (see Fig. 6.b). Initialization via DLU is 
straightforward and easily applicable. Importantly, 
its effectiveness remains consistent even in higher 
dimensions and demonstrates robust performance 
across various problem types, including multi-
objective and multimodal problems. The 
pseudocode outlining e DLU initialization process is 
presented in Fig. 7. 

The linear initialization method with uniform 
coverage of the search space samples different 
regions of the search space for the initial points, 
whereas the random approach may generate points 
close to each other and enter the first iteration of 
calculations. In other words, it creates greater 
diversity in the initial population, enhances global 
search, and reduces the likelihood of getting 
trapped in local optima. Diagonal initialization, due 
to the uniform distribution of initial points across 
the entire response range, improves the algorithm’s 
performance by strengthening the exploration or 
global search phase in the first step, reducing the 
required iterations, and increasing accuracy. 

 

 
(a) 

 
(b) 

Fig. 6. DLU initialization process for: a) 2D,  
b) 3D, spaces 

https://doi.org/10.22034/CEEJ.2025.64646.2399
mailto:reza.sojoudizadeh@iau.ac.ir


Seyed Oskouei et al. / J. Civ. Env. Eng. 55 (2025)   106 
 

 

 

 
Fig. 7. Pseudo code of the DLU initialization 

process 

 

4.1. Validation of I-ARO 
Validation of optimization algorithms is a vital 

process for assessing their accuracy, reliability, and 
efficiency. This is achieved through various 
methods such as standard benchmark functions, 
comparison with reference algorithms, statistical 
analysis, asymptotic approaches, and real-world 
applications. The validation process ensures that 
the algorithm can effectively solve optimization 
problems and that its results are trustworthy. 

In this study, the performance of the proposed 
algorithm was evaluated using 23 mathematical 
benchmark functions from CEC2017 and the results 
were validated by comparison with well-known 
algorithms. To ensure fairness, all algorithms were 
executed 30 times, with the initial population size 
and the number of iterations set to 30 and 1000, 
respectively. Performance indicators including 
mean, standard deviation, maximum, and best 
results across the 30 runs were reported in Table 1. 

The findings clearly indicate the high efficiency 
and robustness of the proposed algorithm. 
Comparative analysis with other algorithms also 
confirms its effectiveness in solving optimization 
problems. Furthermore, examination of the 
convergence plots in Fig. 8 demonstrates that the 
proposed approach significantly improves the 
convergence behavior of the Artificial Rabbits 
Optimization algorithm. 
 

Table 1. Validation of I-ARO 
  GA PSO ARO I-ARO 

F1 

Best 3.13E-300 1.32E-09 7.49E-09 0 

Worst 4.37E-242 1.90E-06 2.20E-08 0 

Mean 1.46E-243 9.24E-07 1.26E-08 0 

Std 0 4.92E-07 3.67E-09 0 

F2 

Best 5.37E-151 4.53E-08 4.51E-06 2.68E-200 

Worst 1.73E-98 0.003429355 3.87E-05 2.29E-189 

Mean 5.77E-100 0.000451193 9.72E-06 7.74E-191 

Std 3.16E-99 0.000767668 7.68E-06 0 

F3 Best 3.94E-301 5.26E-06 6.08E-10 2.20E-307 

  GA PSO ARO I-ARO 

Worst 1.25E-197 0.000874834 3.27E-09 8.43E-288 

Mean 4.16E-199 0.000326517 1.89E-09 3.87E-289 

Std 0.00E+00 0.000224414 8.24E-10 0 

F4 

Best 7.70E-154 1.79E-05 8.29E-06 1.98E-172 

Worst 2.56E-97 0.035142677 2.66E-05 3.98E-164 

Mean 8.74E-99 0.009083961 1.62E-05 2.10E-165 

Std 4.68E-98 0.007472062 4.09E-06 0 

F5 

Best 3.35E-06 26.75076727 0.624898405 21.93583048 

Worst 6.55E-03 28.07344896 1090.954969 26.22815407 

Mean 1.09E-03 27.495159 84.14202415 24.52684086 

Std 0.001619295 0.359168123 208.1314924 1.085685936 

F6 

Best 1.59E-07 1.384029948 2.47E-10 0.000112543 

Worst 0.00034795 2.177535768 1.16E-09 0.26089617 

Mean 5.63E-05 1.720228239 6.93E-10 0.026168086 

Std 9.13E-05 0.180469716 2.54E-10 0.076532005 

F7 

Best 3.74E-06 1.18E-06 0.0004845 1.33E-05 

Worst 2.11E-04 8.33E-05 0.022215827 0.000681939 

Mean 6.00E-05 3.16E-05 0.006420786 0.000157451 

Std 5.44E-05 2.28E-05 0.004336444 0.000141794 

F8 

Best -1.26E+04 -6108.287233 -3419.968821 -11748.82531 

Worst -4454.76281 -4789.848948 -2367.600692 -5356.307059 

Mean -9.87E+03 -5438.862167 -2860.698924 -8271.636958 

Std 3602.770098 320.9542892 261.8541017 2037.872321 

F9 

Best 0.00E+00 0 5.969754343 0 

Worst 4.09E-07 1.07E-06 33.82848667 0 

Mean 1.36E-08 3.14E-07 17.77657189 0 

Std 7.47E-08 3.47E-07 7.296133342 0 

F10 

Best 4.44E-16 5.55E-07 6.89E-06 4.44E-16 

Worst 4.44E-16 0.000357466 2.579927557 4.44E-16 

Mean 4.44E-16 0.000185204 0.672278655 4.44E-16 

Std 0 0.000110479 0.958397214 0 

F11 

Best 0 2.64E-06 0.073766397 0 

Worst 0.00E+00 1.34E-05 0.580395357 0 

Mean 0.00E+00 6.85E-06 0.258365675 0 

Std 0.00E+00 2.75E-06 0.122077156 0 

F12 

Best 1.30E-09 0.533896601 4.89E-12 3.35E-05 

Worst 4.80E-06 0.673489616 4.390221787 0.112179351 

Mean 4.50E-07 0.60035013 0.410222833 0.008397946 

Std 8.97E-07 0.031134013 0.923839097 0.027770677 

F13 

Best 2.81E-08 2.909689137 1.23E-11 0.011503796 

Worst 3.32E-05 2.966081647 0.021023766 1.467820239 

Mean 4.71E-06 2.964197557 0.00253202 0.40466719 

Std 9.43E-06 0.010294997 0.005424326 0.34711147 

F14 

Best 0.998003838 1.9920309 0.998003838 0.998003838 

Worst 12.67050581 12.67050581 0.998003838 2.982105157 

Mean 2.109545159 10.7717628 0.998003838 1.19667749 

Std 2.73E+00 3.455166075 2.59E-16 0.480835503 
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  GA PSO ARO I-ARO 

F15 

Best 3.10E-04 0.000310624 0.000422979 0.000307486 

Worst 6.57E-04 0.046231698 0.001621365 0.022553327 

Mean 4.42E-04 0.005223639 0.000874561 0.005628281 

Std 7.82E-05 0.010876221 0.000271227 0.008472899 

F16 

Best -1.03E+00 -1.031628453 -1.031628453 -1.031628453 

Worst -1.03E+00 -1.031628453 -1.031628453 -1.031628453 

Mean -1.03E+00 -1.031628453 -1.031628453 -1.031628453 

Std 2.16E-04 7.42E-12 8.77E-15 6.78E-16 

F17 

Best 0.39788783 0.556509834 0.397887358 0.397887358 

Worst 0.398742933 8.756369965 0.397887358 0.397887358 

Mean 0.397998855 2.428547078 0.397887358 0.397887358 

Std 0.000168612 1.737985169 5.75E-14 0 

F18 

Best 3.00087027 3 3 3 

Worst 3.067040078 30 3 3 

Mean 3.015375507 8.4 3 3 

Std 0.016608471 10.98462876 6.36E-14 2.25E-15 

F19 

Best -3.862767353 -3.862782018 -3.862782148 -3.862782148 

Worst -3.85E+00 -3.862778591 -3.862782148 -3.089764163 

Mean -3.85960911 -3.862781327 -3.862782148 -3.837014882 

Std 0.002636484 8.57E-07 6.70E-14 0.141133129 

F20 

Best -3.317082587 -3.321994956 -3.321995172 -3.321995156 

Worst -2.930910448 -3.203079336 -3.194243302 -3.197377007 

Mean -3.209898501 -3.294250713 -3.225103277 -3.301934802 

Std 0.098325225 0.051149366 0.0493378 0.045608024 

F21 

Best -10.153181 -10.15317377 -10.15319968 -10.15319968 

Worst -10.12609174 -2.630463646 -2.630471668 -10.15319868 

Mean -10.1485866 -8.049783709 -8.648419106 -10.15319962 

Std 0.006555551 2.656562185 2.837221482 2.04E-07 

F22 

Best -10.40285967 -10.40293027 -10.40294057 -10.40294057 

Worst -10.38867867 -2.765892977 -2.751933564 -3.724300347 

Mean -10.39997246 -7.980360379 -9.717534966 -10.18031923 

Std 0.00365955 3.06357822 2.122012957 1.219347301 

F23 

Best -10.53632852 -10.53633983 -10.53640982 -10.53640982 

Worst -10.50868384 -2.421723252 -2.421734027 -1.859480301 

Mean -10.53207146 -8.332619399 -8.165053327 -8.224634567 

Std 0.00624807 3.482800752 3.478475609 3.614669811 

 

 
Fig. 8. Validation of I-ARO 

 

5. Numerical Investigations 
This section presents the results of numerical 

investigations conducted using the ARO algorithm 
and its improved version, I-ARO, in the design 
optimization of large-scale frame structures. 

Given the inherent nature of large-scale 
structural design problems, uncertainties arising 
from unforeseen parameters (such as the precise 
characteristics of seismic records or the degree of 
connection semi-rigidity) can influence 
optimization results. In this study, an indirect yet 
effective approach has been adopted to investigate 
the robustness and efficiency of the I-ARO algorithm 
in confronting such uncertainties. The selection of 
three frame structures with significantly different 
characteristics (including variations in the number 
of stories, bays, and geometric complexities) was 
meticulously performed to cover a broad spectrum 
of structural behaviors and design challenges. This 
diversity in case studies implicitly serves as a test 
for evaluating the algorithm's resilience to wide-
ranging variations in problem inputs. Furthermore, 
the introduction of the Diagonal Linear Uniform 
(DLU) initialization process in the I-ARO algorithm 
plays a crucial role in reducing the algorithm's 
sensitivity to initial fluctuations and uncertainties 
related to the search space. This enhancement not 
only accelerates convergence but also, by more 
uniformly and strategically distributing the initial 
population, helps the algorithm discover optimal 
solutions with greater confidence in a space that 
might be influenced by uncertain parameters. 
Therefore, although explicit modeling of 
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uncertainties (such as through complex 
probabilistic analyses) was not the primary 
objective of this study, the judicious selection of 
case studies and the inherent improvement of the 
algorithm allow I-ARO to demonstrate strong and 
reliable performance across a broad range of 
conditions and common uncertainties encountered 
in real-world structural design. 

Although the analysis does not explicitly 
perform detailed nonlinear structural analysis, the 
nonlinear behavior of the structures is implicitly 
accounted for through these code-based design 
criteria, such as limits on strength, stability, and 
deformation. The intelligent optimization 
algorithms effectively handle the complex, 
nonlinear relationships between design variables 
and performance criteria by exploring the design 
space thoroughly. 

 

5.1. 8-Story, single-bay frame structure 
Fig. 9 depicts the schematic view of an 8-story, 

single-bay frame structure and the applied loads. 
The structure’s 24 members are divided into eight 
groups, as shown in Fig. 9. The sole performance 
constraint is the lateral drift at the structure’s apex, 
which must not exceed 2 inches. 

The material properties include a modulus of 
elasticity (E) of 200GPa (29×103ksi) and a material 
density (ρ) of 76.8KN/m3 (2.83×10-4Kip/m3). A 
series of eight-digit binary numbers are used to 
represent 268 W-sections sourced from the AISC-
ASD. 

Fig. 10 represents the optimization process for 
the 8-story frame structure using two different 
methods: ARO and the newly developed I-ARO 
method in this study. Both curves start at a higher 
objective function value and decrease as the 
number of function evaluations increases, which 
suggests an optimization process where the goal is 
to minimize the overall weight of the frame 
structure. The convergence curve of both the ARO 
and I-ARO methods decreases sharply and then 
levels off, indicating that a solution was rapidly 
found, which did not significantly improve with 
further evaluations after about 10,000 function 
evaluations. However, the I-ARO method decreases 
more gradually, suggesting a more incremental 
optimization process. A close-up view of the last 
iterations shows that the I-ARO method achieves a 
lower objective function value than the ARO method 
and maintains this lead. Overall, the results suggest 
that the I-ARO method was able to find a better 
objective function value (lower weight) more 
quickly than the ARO method in optimizing the 8-
story frame structure. 

 
Fig. 9. Schematic view of the 8-story single bay 

frame structure 

 

 
Fig. 10. Optimization process for the 8-Story 

frame structure 
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Table 2 presents a comparison of different 
optimization methods in terms of the optimum 
structural steel sections selected for the design of an 
8-story benchmark structure. It also shows the 
corresponding total weight of the structure. The 
methods compared include Optimum Criteria (OC), 
Genetic Algorithm (GA), Differential Evolution (DE), 
Evolution Strategies with Differential Evolution (ES-
DE), ARO, and Improved ARO (I-ARO). The total 
weight of the structure is a significant indicator of 
the efficiency of the design in terms of material 
usage. A lower total weight often indicates a more 
cost-effective and material-efficient design. 

The I-ARO method resulted in the lightest 
structure at 31.33kN, which is marginally lighter 
than the ARO method (31.88kN) and the other 
methods. This suggests that I-ARO is potentially 
more efficient in material usage while likely 
maintaining the necessary structural integrity. In 
several design groups, the I-ARO method selected 
lighter sections compared to ARO. For example, in 
group 2, both ARO and I-ARO chose W16X31, which 
is lighter than the sections chosen by the other 
methods except for DE and ES-DE. In group 7, I-ARO 
opted for a lighter section (W18X35) compared to 
ARO's choice (W18X40). 
 

Table 2. Optimum weight and design sections of the 8-
Story frame structure 

Groups 

OC 
(Khot, 
1976) 

GA  
(Camp, 
1998) 

DE 
(Talataha
ri, 2015) 

ES–DE 
(Talatahari, 

2015) 
ARO I-ARO 

1 W21X68 W18X35 W16X36 W18X40 W18X35 W18X35 

2 W24X55 W18X35 W16X36 W18X35 W16X31 W16X31 

3 W21X50 W18X35 W14X22 W14X22 W16X31 W14X22 

4 W12X40 W18X26 W12X22 W12X14 W12X14 W14X22 

5 W14X34 W18X46 W18X35 W18X46 W18X35 W18X35 

6 W10X39 W16X31 W16X31 W18X35 W18X35 W18X40 

7 W10X33 W16X26 W18X40 W18X35 W18X40 W18X35 

8 W8X18 W12X16 W14X30 W12X19 W16X26 W14X22 

Wei
ght 
kN 

41.02 32.83 32.76 31.77 31.88 31.33 

OC: Optimality Criterion 
GA: Genetic Algorithm 
DE: Differential Evolution 
ES–DE: Hybrid eagle strategy algorithm with differential evolution 

 
5.2. 15-Story, 3-bay frame structure 

Fig. 11 illustrates the schematic view of a 15-
story frame structure, detailing the various groups 
of elements and the forces exerted on the structure. 
Optimization constraints included both 
displacement limits and AISC combined strength 
guidelines. The top floor's lateral movement is 
restricted to under 23.5 cm. The material's modulus 
of elasticity is specified at E=200GPa, with a yield 
stress of Fy=248.2MPa. It's assumed that columns 
are unbraced for their entire length, and the 
unbraced length for each beam is calculated to be 
one-fifth of its span length. 

 
Fig. 11. Schematic view of the 15-story, 3-bay 

frame structure 

Fig. 12 presents a performance comparison 
between the ARO and I-ARO algorithms, as applied 
to the optimum design of a 15-story frame structure. 
In this case, both ARO and I-ARO exhibit a rapid 
initial decrease in the objective function value, with 
the curve flattening out as the number of 
evaluations increases, a trend typical of 
optimization algorithms. It is evident that I-ARO is 
more efficient and effective, as its curve consistently 
lies below that of ARO, indicating lower objective 
function values for a given number of function 
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evaluations. This demonstrates that, for the 15-
story frame structure, the I-ARO algorithm can 
reach more optimal solutions more quickly than 
ARO, suggesting that the improved I-ARO performs 
better in addressing this structural optimization 
problem. 

 

 
Fig. 12. Optimization process for the 15-story, 3-

bay frame structure  

Table 3 compares the optimum weight and 
design sections of a 15-story frame structure 
obtained using various optimization algorithms. 
Notably, the I-ARO algorithm achieves the lowest 
total weight of 391.72kN, demonstrating its 
superior efficiency in optimizing structural design 
to reduce weight while maintaining structural 
integrity. 

This comparison highlights the critical role of 
selecting an appropriate optimization algorithm 
based on project-specific goals, such as minimizing 
weight, as well as meeting safety and performance 
criteria. The variability in design section choices 
and total optimized weights across different 
algorithms underscores the trade-offs and unique 
strengths each method offers in structural design, 
emphasizing the importance of algorithm selection 
in achieving optimal structural solutions. 

 
Table 3. Optimum weight and design sections of the 15-story frame structure 

Groups 
HPSACO 

(Kaveh et al. 
2009) 

HBB-BC 
(Kaveh et 
al. 2010) 

DE 
(Talatahari 
et al. 2015) 

PSO (Kaveh 
et al. 2015) 

PSOPC 
(Kaveh et al. 

2010) 
ARO I-ARO 

1 W21X111 W24X117 W21X122 W33X118 W27x129 W12X96 W21X122 
2 W18X158 W21X132 W33X141 W33X263 W24x131 W36X160 W18X143 
3 W10X88 W12X95 W14X82 W24X76 W24x103 W30X90 W18X76 
4 W30X116 W18X119 W30X108 W36X256 W33x141 W18X97 W24X104 
5 W21X83 W21X93 W30X108 W21X73 W24x104 W12X72 W12X72 
6 W24X103 W18X97 W12X79 W18X86 W10x88 W18X86 W30X90 
7 W21X55 W18X76 W14X61 W18X65 W14x74 W12X58 W18X65 
8 W27X114 W18X65 W18X71 W21X68 W27x94 W14X61 W18X60 
9 W10X33 W18X60 W6X25 W18X60 W21x57 W8X28 W8X24 

10 W18X46 W10X39 W24X62 W18X65 W18x71 W10X33 W14X38 
11 W21X44 W21X48 W21X48 W21X44 W21x44 W21X48 W21X44 

Weight (kN) 426.36 434.54 423.83 496.68 452.34 399.65 391.72 
PSO: Particle Swarm Optimization  
HPSACO: Hybrid algorithm based on particle swarm, ant colony and harmony search algorithms 
HBB–BC: Hybrid big bang–big crunch and particle swarm optimization algorithms 
ICA: Imperialist Competitive Algorithm 

 
5.3. 24-Story, 3-bay frame structure 

The third structure in this study is a 24-story 
steel frame building, featuring three bays and 
comprising 168 structural components. The steel's 
modulus of elasticity and yield strength are set to 
205GPa and 230.3MPa, respectively. The frame's 
168 components are organized into 20 distinct 
design categories. A diagram illustrating this 
framework is provided in Fig. 13. 

Fig. 14 demonstrates a comparison between the 
ARO and the newly proposed I-ARO in the optimum 
design of the 24-story, 3-bay frame structure. As the 
number of function evaluations increases, both 
algorithms appear to find better solutions, as 
indicated by the decrease in the objective function 
value. However, the I-ARO tends to find better 

solutions more quickly than the ARO, descending to 
lower objective function values sooner. The inset 
graph zooms in on a section of the plot (from 4,000 
to 10,000 function evaluations) to show the 
differences in more detail. It illustrates that beyond 
a certain point (around 4,000 evaluations), the I-
ARO maintains a consistent lead over the ARO, 
achieving lower objective function values and thus 
indicating better performance according to the 
optimization criteria. 
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Fig. 13. Schematic view of the 24-story, 3-bay 

frame structure 

 

      Table 4 showcases the superiority of the I-ARO 
algorithm by highlighting its consistently favorable 
selection of steel sections across multiple groups. 
Compared to other algorithms, I-ARO consistently 
chooses sections with competitive weights, 
suggesting a more efficient utilization of materials 
without compromising structural integrity. 

 
 

Fig. 14. Optimization process for the 24-story 
frame 3-bay frame structure 

 
Furthermore, I-ARO achieves this superior 

performance while reducing the overall weight of 
the structure, indicating its effectiveness in 
optimizing structural designs for weight reduction. 
These results underscore the effectiveness and 
potential superiority of the I-ARO algorithm in 
achieving an optimal structural weight of 926.85kN, 
making it a compelling choice for structural 
engineering optimization tasks. 
 

6. Conclusion 
This paper primarily focuses on examining the 

suitability of the Artificial Rabbits Optimization 
(ARO) algorithm, a recently developed 
metaheuristic approach, for optimizing the design 
of large-scale frame structures. For numerical 
investigations, three frame structures with varying 
characteristics are selected: an 8-story single bay 
frame structure; a 15-story, 3-bay benchmark frame 
structure; and a 24-story, 3-bay frame structure. To 
enhance the computational performance of the 
standard ARO algorithm, an improved version 
termed I-ARO is introduced, which employs the 
Diagonal Linear Uniform (DLU) initialization 
process instead of the conventional Brownian 
random initialization scheme. Comparative analysis 
of the results obtained using I-ARO and other 
methods documented in the existing literature 
clearly shows that the DLU process significantly 
enhances the optimization capability of the 
standard ARO algorithm. Specifically, the improved 
algorithm demonstrates the ability to achieve lower 
structural weights for the considered design 
examples. 
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Table. 4. Optimum weight and design sections of the 24-story frame structure 

Groups 
ACO 

(Camp et 
al. 2005) 

HS 
(Degertekin 
et al. 2008) 

IACO  
(Kaveh et 
al. 2010) 

ICA 
(Kaveh et 
al. 2010) 

DE 
(Talatahari et 

al. 2015-a) 

ES-DE 
(Talatahari et 

al. 2015-b) 
ARO I-ARO 

1 W30X90 W30X90 W30X99 W30X90 W30X90 W30X90 W30X108 W30X90 
2 W8X18 W10X22 W16X26 W21X50 W21X48 W21X55 W21X48 W21X50 
3 W24X55 W18X40 W18X35 W24X55 W21X44 W21X48 W21X48 W21X48 
4 W8X21 W12X16 W14X22 W8X28 W27X129 W10X45 W12X22 W12X19 
5 W14X145 W14X176 W14X145 W14X109 W14X176 W14X145 W14X159 W14X109 
6 W14X132 W14X176 W14X132 W14X159 W14X120 W14X109 W14X145 W14X109 
7 W14X132 W14X132 W14X120 W14X120 W14X132 W14X99 W14X109 W14X132 
8 W14X132 W14X109 W14X109 W14X90 W14X132 W14X145 W14X74 W14X74 
9 W14X68 W14X82 W14X48 W14X74 W14X109 W14X109 W14X68 W14X68 

10 W14X53 W14X74 W14X48 W14X68 W14X53 W14X48 W14X43 W14X38 
11 W14X43 W14X34 W14X34 W14X30 W14X61 W14X38 W14X34 W14X30 
12 W14X43 W14X22 W14X30 W14X38 W14X30 W14X30 W14X34 W14X30 
13 W14X145 W14X145 W14X159 W14X159 W14X99 W14X99 W14X30 W14X132 
14 W14X145 W14X132 W14X120 W14X132 W14X132 W14X132 W14X82 W14X132 
15 W14X120 W14X109 W14X109 W14X99 W14X109 W14X109 W14X90 W14X99 
16 W14X90 W14X82 W14X99 W14X82 W14X74 W14X68 W14X82 W14X120 
17 W14X90 W14X61 W14X82 W14X68 W14X82 W14X68 W14X82 W14X85 
18 W14X61 W14X48 W14X53 W14X48 W14X82 W14X68 W14X61 W14X82 
19 W14X30 W14X30 W14X38 W14X34 W14X48 W14X61 W14X33 W14X43 
20 W14X26 W14X22 W14X26 W14X22 W14X82 W14X22 W14X26 W14X22 

Weight 
(kN) 980.63 956.13 967.33 946.25 997.56 945.15 973.37 926.85 

ACO: Ant Colony Optimization 
HS: Harmony Search Algorithm 
IACO: Improved Ant Colony Optimization 

 

 
6. Conclusion 

This paper primarily focuses on examining the 
suitability of the Artificial Rabbits Optimization 
(ARO) algorithm, a recently developed 
metaheuristic approach, for optimizing the design 
of large-scale frame structures. For numerical 
investigations, three frame structures with varying 
characteristics are selected: an 8-story single bay 
frame structure; a 15-story, 3-bay benchmark frame 
structure; and a 24-story, 3-bay frame structure. To 
enhance the computational performance of the 
standard ARO algorithm, an improved version 
termed I-ARO is introduced, which employs the 
Diagonal Linear Uniform (DLU) initialization 
process instead of the conventional Brownian 
random initialization scheme. Comparative analysis 
of the results obtained using I-ARO and other 
methods documented in the existing literature 
clearly shows that the DLU process significantly 
enhances the optimization capability of the 
standard ARO algorithm. Specifically, the improved 
algorithm demonstrates the ability to achieve lower 
structural weights for the considered design 
examples. 

The enhancement of the Artificial Rabbits 
Optimization (ARO) algorithm through the 
substitution of Brownian initialization with the 
Diagonal Linear Uniform (DLU) initialization may, at 
first glance, appear to be a relatively modest 
modification. Nonetheless, even ostensibly 
straightforward alterations in initialization 
strategies can exert a substantial influence on the 

convergence characteristics and overall efficacy of 
metaheuristic algorithms. The DLU approach 
facilitates the generation of a more uniformly 
distributed and well-dispersed initial population, 
thereby enabling the improved ARO (I-ARO) 
algorithm to more effectively explore the search 
space and mitigate the risk of premature 
convergence. 

While this study primarily demonstrates the 
effectiveness of the proposed enhancement through 
numerical experiments on benchmark problems, 
the findings are nonetheless significant, showcasing 
notable improvements in performance within 
complex engineering optimization scenarios. The 
algorithm’s performance was assessed using 23 
mathematical benchmark functions from CEC2017, 
and the results were validated by comparing them 
against well-established algorithms. To ensure a fair 
evaluation, each algorithm was executed 30 times, 
with an initial population size of 30 and 1000 
iterations per run. Overall, the validation conducted 
in this research offers robust empirical evidence, 
highlighting a simple yet effective strategy to 
enhance algorithmic performance and contributing 
meaningfully to the optimization field. 

In conclusion, the numerical investigations 
conducted using the ARO and its improved version, 
I-ARO, have provided significant insights into the 
design optimization of large-scale frame structures. 
The results obtained from optimizing 8-story, 15-
story, and 24-story frame structures demonstrate 
the effectiveness and superiority of the I-ARO 
method over the traditional ARO and other 
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optimization techniques. Key findings from these 
investigations include: 

• The optimization process for the 8-story frame 
structure revealed that the I-ARO method achieved 
a lower objective function value (i.e., lower weight) 
more rapidly than the ARO method, showcasing its 
efficiency in finding optimal solutions. 

• The comparative analysis of optimization 
methods for the 8-story frame structure highlighted 
I-ARO's ability to select lighter structural steel 
sections, resulting in a slightly lower total weight 
compared to ARO and other methods, thereby 
emphasizing its potential for cost-effectiveness and 
material efficiency. 

• Similarly, for the 15-story frame structure, the 
I-ARO algorithm consistently outperformed the 
ARO in reaching more optimal solutions faster, as 
evidenced by lower objective function values for a 
given number of function evaluations. 

• I-ARO is superior to various optimization 
algorithms in achieving the lowest total weight for 
the 15-story frame structure, underscoring its 
efficiency in reducing structural weight while 
maintaining structural integrity. 

• The optimization process for the 24-story 
frame structure reaffirmed the effectiveness of I-
ARO over ARO, as it consistently found better 
solutions more quickly. 

• I-ARO's competitive selection of steel sections 
across multiple groups for the 24-story frame 
structure leads to a significantly reduced total 
weight compared to other algorithms, thus 
establishing its compelling advantage in structural 
engineering optimization tasks. 

Overall, the results indicate that the I-ARO 
algorithm offers a promising approach for 
optimizing the design of large-scale frame 
structures, with implications for enhancing 
structural efficiency, reducing material usage, and 
achieving cost-effective solutions. These findings 
contribute valuable insights to the field of structural 
engineering and underscore the importance of 
improvement techniques in enhancing the overall 
performance of metaheuristic algorithms in dealing 
with the complex optimization challenges in 
structural design. 
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