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ABSTRACT: 
Probability density functions of the involved random variables are essential for the reliability-based 
design of offshore structures. The objective of present research was the derivation of probability density 
function (PDF) for the local joint flexibility (LJF) factor, fLJF, in two-planar tubular DK-joints commonly 
found in jacket-type offshore structures. A total of 162 finite element (FE) analyses were carried out on 
81 FE models of DK-joints subjected to two types of axial loading. Generated FE models were validated 
using available experimental data, FE results, and design formulas. Based on the results of parametric FE 
study, a sample database was prepared for the fLJF values and density histograms were generated for 
respective samples based on the Freedman-Diaconis rule. Nine theoretical PDFs were fitted to the 
developed histograms and the maximum likelihood (ML) method was applied to evaluate the parameters 
of fitted PDFs. In each case, the Kolmogorov-Smirnov and chi-squared tests were used to evaluate the 
goodness of fit. Finally, the Inverse Gaussian model was proposed as the governing probability 
distribution function for the fLJF. After substituting the values of estimated parameters, two fully defined 
PDFs were presented for the fLJF in tubular DK-joints subjected to two types of axial loading. 

KEYWORDS: 
Tubular DK-joint, LJF factor, Probability density function (PDF), Inverse Gaussian model, Goodness-of-fit 
test. 

1. Introduction 

A jacket that is a welded steel space frame 
fabricated with circular hollows section (CHS) 
members is one of the most frequently used 
structural systems for the substructure of offshore 
wind turbines (OWTs) and oil/gas production 
platforms in shallow and intermediate water 
depths. The connection of the CHS members in 
which the prepared ends of brace members are 
welded onto the undisturbed surface of a chord 
member is called a tubular joint (Fig. 1a).  

One of the factors affecting the global static and 
dynamic responses of an offshore structure is the 
local joint flexibility (LJF) which is an intrinsic 
feature of a tubular joint. The LJF increases the 

deflections, redistributes the nominal stresses, 
reduces the buckling loads and changes the natural 
frequencies of the structure (Bouwkamp et al., 
1980; Underwater Engineering Group (UEG), 1985; 
Gao et al., 2013). For example, analysis of a jacket 
platform considering the local flexibility of the joints 
results in higher primary natural period of vibration 
and lower base shear compared to the case in which 
the joints are assumed to be rigid.  These facts imply 
that the conventional procedures for the analysis 
and design of tubular structures with the 
assumption that the tubular joints are rigid may not 
be accurate enough, especially for unstiffened 
joints. Hence, it is necessary to determine the local 
joint flexibility for commonly used tubular joints. 

The primary factors that affect the LJF are the 
joint type, its geometrical properties, and brace 
loading type. In order to relate the behavior of a  
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Fig. 1. (a) Two-planar tubular DK-joints in an OWT jacket substructure, (b) Geometrical notation for a two-planar DK-
joint, (c) Considered axial loading conditions 

 
tubular joint to its geometrical characteristics, a set 
of dimensionless geometrical parameters including 
α, αB, β, γ, τ, and ζ, defined in Fig. 1b, is commonly 
used. 

Static and dynamic analyses of deterministic 
type usually lead to conservative designs. The 
reason is that in a deterministic analysis, limiting 
assumptions should be made on numerous input 
parameters some of which exhibit considerable 
scatter. This fact emphasizes the significance of 
reliability-based analysis and design methods in 
which the key parameters of the problem can be 
modeled as random variables. The fundamentals of 
reliability assessment, if properly applied, can 
provide immense insight into the performance and 
safety of the structural system. Regardless of the 
method used for the reliability-based analysis and 
design of steel offshore structures, the probabilistic 
and statistical measures of the LJF are required as 
input parameters. The LJF shows considerable 
scatter highlighting the significance of deriving its 
governing probability distribution function.  

In the present research, a total of 162 finite 
element (FE) analyses were carried out on 81 FE 
models of two-planar tubular DK-joints which are 
among the most common joint types in jacket 
substructure of OWTs and oil/gas production 
platforms. FE analyses were conducted under two 
types of axial loading as shown in Fig. 1c. Generated 

FE models were validated using the existing 
experimental data, FE results, and design formulas. 
Based on a parametric FE investigation, a sample 
database was created for the LJF factor (fLJF) (Sect. 
3); and density histograms were generated for 
respective samples based on the Freedman-
Diaconis rule (Sect. 4). Nine theoretical probability 
density functions (PDFs) were fitted to the 
developed histograms and the maximum likelihood 
(ML) method was applied to evaluate the 
parameters of fitted PDFs (Sect. 5). In each case, the 
Kolmogorov-Smirnov and chi-squared tests were 
used to assess the goodness of fit (Sect. 6). Finally, a 
probability distribution model was proposed for the 
fLJF; and after substituting the values of estimated 
parameters, two fully defined PDFs were presented 
for the fLJF in two-planar tubular DK-joints under 
two types of axial loading (Sect. 7). 

2. Literature survey 

Underwater Engineering Group, UEG (1985) and 
Det Norske Veritas, DNV (1977) have provided 
parametric equations to determine the LJF for 
tubular T-/Y-joints. The UEG guidelines do not 
clearly define the range of applicability; and the 
DNV equations are based on a limited number of FE 
analyses. Efthymiou (1985) developed a set of 
equations for T-, Y-, and K-joints subjected to in-
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plane bending (IPB) and out-of-plane bending 
(OPB) loads by numerical analysis. The database 
was limited to 12 T-, 3 Y-, and 5 K-joints, 5 of which 
were partially overlapped.  

Fessler et al. (1986) measured the local 
deformation of the chord wall subjected to basic 
loadings within the elastic range based on 27 
models and derived a set of parametric equations 
for both T-/Y- and K-joints. However, their 
experimental models were made from araldite 
instead of steel; and they had relatively small scale. 
Ueda et al. (1990) proposed a set of equations to 
predict the LJF under the axial and IPB loads based 
on FE analysis of 11 T-joint models. The results 
amended and improved the accuracy and 
maintained the simplicity of numerical computation 
as well. However, the validity range of geometrical 
parameters for these equations was very limited in 
terms of brace-to-chord diameter ratio, which was 
restricted to 0.35−0.55.  

Chen et al. (1990) determined the LJF of T-, Y-, 
and K-joints. By using the semi-analytical approach, 
Chen et al. (1993) and Hoshyari and Kohoutek 
(1993) quantified the LJF for simple gap K- and T-
/Y-joints, respectively. Buitrago et al. (1993) 
provided the methodology as well as the parametric 
equations for computing the LJF in gap and partially 
overlapped joints based on the FE analysis. Chen 
and Zhang (1996) studied the stress distribution in 
space frames with the consideration of local 
flexibility of multi-planar tubular joints.  

Hu et al. (1993) and Golafshani et al. (2013) 
proposed equivalent elements representing the 
local flexibility of tubular joints in structural 
analysis of offshore platforms. Gao et al. (2013, 
2014) and Gao and Hu (2015) proposed parametric 
equations to predict the LJF in completely 
overlapped tubular joints subjected to axial, IPB, 
and OPB loadings, respectively. 

Ahmadi and Ziaei Nejad (2017) developed a set 
of parametric equations to determine the LJF in 
two-planar tubular DK-joints subjected to axial, IPB, 
and OPB loadings, respectively. They indicated that 
the effect of multi-planarity on the LJF can be 
significant and consequently the use of the 
equations already available for uniplanar joints to 
calculate the LJF in multi-planar joints may lead to 
highly under-/over-predicting results. Their finding 
was in agreement with previous studies suggesting 
that the stress and strain distribution in multi-
planar tubular joints might be quite different from 
the uniplanar ones (Karamanos et al., 1999; Ahmadi 
et al., 2011; Ahmadi and Lotfollahi-Yaghin, 2012; 
Ahmadi and Zavvar, 2016). 

Ahmadi and Mayeli (2018, 2019) developed a set 
of probability distribution models for the LJF factors 
in offshore two-planar tubular DK-joints subjected 
to IPB and OPB moment loadings. 

For other investigations related to tubular joints 
such as the studies on the stress concentration 
factor (SCF), degree of bending (DoB), and static 

strength, the reader is referred for example to 
(Ahmadi et al., 2011; Ahmadi et al., 2019; Nassiraei 
et al., 2016, 2017, 2018, 2019; Nassiraei, 2019), 
among many others. 

The above discussion on the previous 
investigations of the LJF indicates that the LJF for 
uniplanar tubular joints such as T-/Y-, X-, and K-
joints due to basic load cases has been extensively 
studied; based on which a set of parametric 
equations have been derived. However, for multi-
planar tubular joints which cover the majority of 
practical applications, the research works in terms 
of the LJF are very limited mainly due to the more 
complexities involved in modeling. Moreover, 
results of research works reported in the literature 
are suitable for deterministic analyses. To the best 
of the authors’ knowledge, no probabilistic study 
has been carried out on the LJF; and there is no 
probability density function available for the LJF 
factors to be used in reliability-based static and 
dynamic analyses. 

3. Preparation of the fLJF samples 

3.1. Determination of the fLJF under the axial 
loading 

The LJF of an axially loaded tubular joint is 
defined as the displacement attributed to the local 
chord wall deformation due to a unit applied load. It 
measures the distortion of the CHS which is an oval 
shape under the axial loading without considering 
the beam bending movement (Gao et al., 2013).  

The LJF of a tubular joint under the axial loading 
can be calculated as follows: 
 

 AX AXLJF sinP 
 (1) 

 
where θ is the brace inclination angle (Fig. 1b), PAX 
is the axial load of the brace, and δAX is the 
displacement caused only by chord wall 
deformation, in which overall bending deflection of 
the chord acting as a beam must be excluded. 

Since the intersection of the brace and chord 
members is a space curve, for the purpose of actual 
calculation in an FE model, δAX can be expressed as 
the average local displacement of the joint normal 
to the chord axis: 
 

       1 1 2 2 3 3 4 4

AX
4

       


         


 
(2) 

 
where δ1, δ2,  δ3, and δ4 are the displacements at 
the crown toe, crown heel, and two saddle positions 
measured perpendicular to the chord axis; and δ'1, 

δ'2, δ'3, andδ'4 are the bending deflections that can 
be determined by simple beam theory. Saddle, 
crown toe, and crown heel positions are shown in 
Fig. 1b.



Hamid Ahmadi and Vahid Mayeli / J. Civ. Env. Eng. 53 (2023)   164 
 

 

 

 
Fig. 2. Positions for the deformation measurement to determine the fLJF in a tubular joint under the axial loading 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3. The mesh generated for a two-planar tubular DK-joint using the sub-zone method 

 
According to Gao et al. (2013, 2014), bending 

deflections in a FE model can be reasonably 
approximated by the displacements at the bottom of 
the chord member corresponding to δ1, δ2,  δ3, 

and δ4, respectively (Fig. 2). The reader is referred  
to Chen et al. (1990) for the details of deriving Eqs. 
(1) and (2).  

In order to relate the local joint flexibility to 
dimensionless geometrical parameters of the joint, 
a dimensionless coefficient called the local joint 
flexibility parameter (fLJF) is defined. Under the axial 
loading, the fLJF is the LJF multiplied by ED: 
 

 LJF AX AX sinf P ED 
 (3) 

 
where D is the chord diameter and E is the Young’s 
modulus. 

Since a two-planar DK-joint has four brace 
members, there are four different positions for the 
application of (1)−(3). However, due to the 
symmetry in the geometry of the joint and either 
symmetry or antisymmetry in the applied loading, 
results obtained from all of these four positions 
would be the same. 

 

3.2. FE modeling procedure 

3.2.1. Modeling of the weld profile 

The welding size along the brace-to-chord 
intersection satisfies the AWS D 1.1 (2002) 
specifications. Details of the weld profile modeling 
according to AWS D 1.1 (2002) are presented and 
discussed by Ahmadi et al. (2012). 
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Fig. 4. Results of the FE model validation 

 
Table 1. Geometrical properties of validating Y-joint models 

Geometrical parameter Value Dimensionless parameters 
Chord length L = 1888.0 mm 

α = 2L/D = 22.4 
γ = D/2T = 12 
β = d/D = 0.32, 0.53, 0.76 
τ = t/T = 0.78 

Chord diameter D = 168.3 mm 
Chord wall thickness T = 7.0 mm 
Brace length l = 623.0 mm 
Brace diameter d = 55.5, 88.2, 127.9 mm 
Brace wall thickness t = 5.5 mm 
Brace inclination angle θ = 60˚ 

 
Table 2. Comparing the results of validating FE model and the experimental data 

β 

fLJF 
Error (%) 

Validating FE model 
Experimental 

data [6] Shell 
Solid 

with weld 
Solid 

without weld 
Shell 

Solid 
with weld 

Solid 
without weld 

0.32 2538.45 1996.40 1525.39 2079.33 22.08 4.15 36.31 
0.53 954.39 895.39 1083.61 985.57 3.16 10.07 9.94 
0.76 437.98 277.63 360.95 300.48 45.75 8.22 20.12 

 
Table 3. Comparing the results of validating FE model and the equation proposed by Fessler et al. (1986) 

β 

fLJF 
Error (%) 

Validating FE model Fessler et al. 
(1986) 

equation 
Shell 

Solid 
with weld 

Solid 
without weld 

Shell 
Solid  
with weld 

Solid 
without weld 

0.32 2538.45 1996.40 1525.39 2133.41 18.98 6.86 39.86 
0.53 954.39 895.39 1083.61 877.40 8.77 2.05 23.50 
0.76 437.98 277.63 360.95 312.50 40.15 12.00 15.50 

Table 4. Statistical measures of the generated fLJF samples 

Statistical 
measure 

fLJF samples 

Sample 1 
(1st axial load case) 

Sample 2 
(2nd axial load case) 

n 
μ 
σ 
α3 
α4 

 
81 

21.1588 
17.5283 
1.8809 
6.9815 

 
81 

20.8825 
19.2750 
2.0901 
7.8598 

 

 
3.2.2. Definition of the boundary conditions 

Chord end fixity condition in tubular joints of 
offshore structures ranges from almost fixed to 
almost pinned with generally being closer to almost 
fixed (Efthymiou, 1988). In the view of the fact that 
the effect of the chord end restraints on the stress 
distribution at the brace/chord intersection is only 
significant for joints with α < 8 and high β and γ 
values (Smedley and Fisher, 1991; Morgan and Lee, 
1998), which do not commonly occur in practice, 
both chord ends were assumed to be fixed, with the 

corresponding nodes restrained. For a joint with the 
brace member of sufficient length, the brace end 
fixity imposes marginal effects on the joint strength 
(Choo et al., 2006). The sufficient brace length is 
discussed in Sect. 3.3. In the present research, no 
restraint was applied to the upper end brace 
members. 

 

3.2.3. Mesh generation and analysis 

ANSYS 16 element type SOLID Brick 185 was 
used to model the chord, braces, and the weld 
profiles. These elements have compatible 
displacements and are well-suited to model curved 
boundaries. The element is defined by eight nodes 
having three degrees of freedom per node and may 
have any spatial orientation. Using this type of 3-D 
brick elements, the weld profile can be modeled as 
a sharp notch. This method will produce more 
accurate and detailed stress distribution near the 
intersection in comparison with a simple shell 
analysis (See Sect. 3.2.4). To guarantee the mesh 
quality, a sub-zone mesh generation method was 
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used during the FE modeling. In this method, the 
entire structure is divided into several different 
zones according to the computational requirements. 
The mesh of each zone is generated separately and 
then the mesh of entire structure is produced by 
merging the meshes of all the sub-zones. This 
method can easily control the mesh quantity and 
quality and avoid badly distorted elements. The 
mesh generated by this method for a two-planar 
DK-joint is shown in Fig. 3. In order to make sure 
that the results of the FE analysis are not affected by 
the inadequate quality or the size of the generated 
mesh, convergence test was conducted and meshes 
with different densities were used in this test, 
before generating the 81 models. The static analysis 
of linearly elastic type is suitable for the prediction 
of LJF in tubular joints (Gao et al., 2014; Gao and Hu, 
2015). The Young’s modulus and Poisson’s ratio 
were taken to be 207 GPa and 0.3, respectively. 

 

3.2.4. Validation of the FE model 

The accuracy of FE results to determine the fLJF 
in tubular joints should be validated using the 
experimental test results. To the best of the authors’ 
knowledge, there is no experimental/FE database of 
fLJF for two-planar tubular DK-joints currently 
available in the literature. Considering this issue, in 
order to verify the FE model used in the present 
study, a set of Y-joints were modeled and the fLJF 
values obtained from these models were compared 
with the experimental results of Fessler et al. 
(1986), values predicted by Fessler et al. equation 
(1986), and the FE results of Gao et al. (2014). 
Geometrical properties of the validating Y-joints 
have been presented in Table 1. The procedure of 
geometrical modeling (introducing the chord, 
braces, and weld profiles), the mesh generation 
method (including the selection of the element type 
and size), the analysis type, and the method of fLJF 
calculation are the same for the validating Y-joint 
models and the DK-joints used in the present 
research for the parametric study. Hence, the 
verification of the fLJF values derived from the 
validating FE models with available corresponding 
experiment-/FE-/equation-predicted values lends 
some support to the validity of the fLJF values 
derived from the DK-joint FE models. 

Results of the FE validation process have been 
presented in Fig. 4 along with Tables 2 and 3. The 
effects of the element type and the weld profile were 
also investigated. A comparison between the results 
obtained by the solid and shell elements indicated 
that the solid elements lead to more accurate fLJF 
values. Moreover, the comparison of solid models 
with and without the weld profile showed that the 
omission of the weld profile results in the increase 
of the error percentage. As can be seen in Fig. 4, 
there is a good agreement between the results of 
previous studies and the predictions of the 

validating FE model. According to Table 2, the 
maximum difference between the fLJF of the 
validating FE model and the experimental results of 
Fessler et al. (1986) is 10.07%; and Table 3 
indicates that the maximum difference between the 
results of the validating FE model and the equation 
proposed by Fessler et al. (1986) is 12%. Hence, 
generated FE models can be considered to be 
accurate enough to provide valid results. 
 

3.3. Parametric investigation 

Using ANSYS, a total of 81 FE models were 
generated and analyzed in order to study the effects 
of geometrical parameters on the fLJF in two-planar 
DK-joints subjected to two types of axial loading 
(Fig. 1c). Different values assigned to the 
parameters β, γ, τ, and θ are as follows: β = 0.4, 0.5, 
0.6; γ = 12, 18, 24; τ = 0.4, 0.7, 1.0; and θ = 30˚, 45˚, 
60˚. These values cover the practical ranges of 
dimensionless parameters typically found in 
tubular joints of offshore jacket structures. 
Providing that the gap between the braces is not 
very large, the relative gap (ζ = g / D) has no 
considerable effect on the stress and strain 
distribution. The validity range for this statement is 
0.2 ≤ ζ ≤ 0.6 (Lotfollahi-Yaghin and Ahmadi, 2010). 
Hence, a typical value of ζ = 0.3 was designated for 
all joints. Sufficiently long chord greater than six 
chord diameters (i.e. α ≥ 12) should be used to 
ensure that the stresses at the brace/chord 
intersection are not affected by the chord’s 
boundary conditions (Efthymiou, 1988). Hence, in 
this study, a realistic value of α = 16 was designated 
for all the models. The brace length has no effect on 
the stress and strain distribution when the 
parameter αB is greater than a critical value (Chang 
and Dover, 1999). According to Chang and Dover 
(1996), this critical value is about 6. In the present 
study, in order to avoid the effect of short brace 
length, a realistic value of αB = 8 was assigned for all 
joints.  

 

3.4. Organization of the fLJF samples 

     The fLJF values extracted from the results of 162 
FE analyses were organized as two samples for 
further statistical and probabilistic analyses. 
Samples 1 and 2 included the fLJF values under the 
1st and 2nd axial loading conditions, respectively. 
Values of the size (n), mean (μ), standard deviation 
(σ), coefficient of skewness (α3), and coefficient of 
kurtosis (α4) for these samples are listed in Table 4. 
The value of α3 for both samples is positive which 
means that the probability distribution for both 
samples is expected to have a longer tail on the right, 
which is toward increasing values, than on the left. 
Moreover, the value of α4 for both samples is greater 
than three meaning that the probability distribution 
is expected to be sharp-peak (leptokurtic) for both 
of the prepared samples.  
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Fig. 5. Density histograms generated for the fLJF samples: (a) Sample 1 (1st axial load case), (b) Sample 2 (2nd axial load 
case)  

 

 

 

Fig. 6. Probability density functions fitted to the histograms generated for the fLJF: (a) Sample 1 (1st axial load case), (b) 
Sample 2 (2nd axial load case) 

 
Table 5. Estimated parameters for PDFs fitted to the density histograms of fLJF samples 

Fitted PDF Parameters 
Estimated values 

Sample 1 
(1st axial load case) 

Sample 2 
(2nd axial load case) 

Birnbaum-Saunders 
β0 
γ0 

15.9317 
0.810684 

15.0622 
0.881752 

Extreme Value 
μ 
σ 

31.1966 
24.5044 

32.0565 
27.7648 

Gamma 
a 
b 

1.89486 
11.1664 

1.62996 
12.8116 

Generalized Extreme Value 
k 
σ 
μ 

0.383676 
8.43034 
12.197 

0.470146 
8.12338 
11.035 

Inverse Gaussian 
μ 
λ 

21.1588 
27.6517 

20.8825 
22.4881 

Log-logistic 
μ 
σ 

2.7632 
0.441026 

2.694 
0.47553 

Lognormal 
λ 
η 

2.76555 
0.76643 

2.70181 
0.825349 

Rayleigh b 19.3796 20.0377 

Weibull 
a 
b 

23.2737 
1.35068 

22.5457 
1.23608 

(a) (b) 

(a) (b) 



Hamid Ahmadi and Vahid Mayeli / J. Civ. Env. Eng. 53 (2023)   168 
 

 

 

4. Developing the density histograms based 
on the Freedman-Diaconis rule 

To develop a density histogram, the range of 
data (R) is divided into a number of classes and the 
number of occurrences in each class is counted and 
tabulated. These are called frequencies. Then, the 
relative frequency of each class can be obtained 
through dividing its frequency by the sample size. 
Afterwards, the density is calculated for each class 
through dividing the relative frequency by the class 
width. The width of classes is usually made equal to 
facilitate interpretation.  

Care should be exercised in the choice of the 
number of classes (nc). Too few will cause an 
omission of some important features of the data; too 
many will not give a clear overall picture because 
there may be high fluctuations in the frequencies. 
One of the widely accepted rules to determine the 
number of classes is the Freedman-Diaconis rule 
expressed as follows (Kottegoda and Rosso, 2008):  
 

 
 

1/3

2 IQR
c

R n
n 

 

(4) 

 

where R is the range of sample data, n is the sample 
size, and IQR is the interquartile range calculated as: 
 

3 1IQR Q Q   (5) 
 

where Q1 is the lower quartile which is the median 
of the lower half of the data; and likewise, Q3 is the 
upper quartile that is the median of the upper half 
of the data. 

Density histograms of generated samples are 
shown in Fig. 5. This figure shows that, as it was 
expected from the values of α3 and α4 in Table 4, the 
right tail is longer than the left one in both of the 
histograms. Also, both histograms are leptokurtic. 
 

5. PDF fitting based on the ML method 

Nine different PDFs were fitted to the density 
histograms to assess the degree of fitting of various 
distributions to the fLJF samples (Fig. 6). In each case, 
distribution parameters were estimated using the 
maximum likelihood (ML) method. Results are 
given in Table 5. The ML procedure is an alternative 
to the method of moments. As a means of finding an 
estimator, statisticians often give it preference. For 
a random variable X with a known PDF, fX (x), and 
observed values x1, x2, . . . , xn, in a random sample of 
size n, the likelihood function of ω, where ω 
represents the vector of unknown parameters, is 
defined as: 

 

 
1

( )
n

X i

i

L f x    



 

(6) 

The objective is to maximize L(ω) for the given 
data set. It is done by taking m partial derivatives of 
L(ω), where m is the number of parameters, and 
equating them to zero. Then the maximum 
likelihood estimators (MLEs) of the parameter set ω 
can be found from the solutions of equations. In this 
way the greatest probability is given to the observed 
set of events, provided that the true form of the 
probability distribution is known.  
 

6. Assessment of the goodness-of-fit 

6.1. Kolmogorov-Smirnov test 

The Kolmogorov-Smirnov goodness-of-fit test is 
a nonparametric test that relates to the cumulative 
distribution function (CDF) of a continuous variable. 
The test statistic, in a two-sided test, is the 
maximum absolute difference (which is usually the 
vertical distance) between the empirical and 
hypothetical CDFs. For a continuous variate X, let 
x(1), x(2), … , x(n) represent the order statistics of a 
sample of the size n, that is, the values arranged in 
increasing order. The empirical or sample 
distribution function Fn(x) is a step function. This 
gives the proportion of values not exceeding x and is 
defined as: 

Fn (x) = 0,       For  x < x(1) 

    = k / n, For  x(k) ≤ x < x(k + 1)  k = 1, 2, …, n – 1 
    = 1,        For  x ≥ x(n) 

 
 

(7) 
 

Empirical distribution functions for generated 
fLJF samples have been shown in Fig. 7. 

Let F0(x) denote a completely specified 
theoretical continuous CDF. The null hypothesis H0 

is that the true CDF of X is the same as F0(x). That is, 
under the null hypothesis: 
 

  1 )()( Prlim 0 


xFxFn
n  

(8) 
 

The test criterion is the maximum absolute 
difference between Fn(x) and F0(x), formally defined 
as: 
 

0sup ( ) ( )n n
x

d  F x F x 

 
(9) 

 

Theoretical continuous CDFs fitted to the 
empirical distribution functions of generated fLJF 
samples have been shown in Fig. 8. 

A large value of this statistic (dn) indicates a poor 
fit. Hence, acceptable values should be known. The 
critical values Dn,ξ for large samples, say n > 35, are 

(1.3581/√𝑛) and (1.6276/√𝑛) for ξ = 0.05 and 0.01, 
respectively (Kottegoda and Rosso, 2008) where ξ is 
the significance level. Results of the Kolmogorov-
Smirnov test for the two prepared samples are given 
in Tables 6 and 7. It is evident in Tables 6 and 7 that 
the Inverse Gaussian distribution has the smallest dn 
value for both samples. Hence, the Inverse Gaussian 
is the best-fitted distribution for both fLJF samples 
(Fig. 9). 
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Fig. 7. Empirical cumulative distribution functions for generated fLJF samples: (a) Sample 1 (1st axial load case), (b) Sample 
2 (2nd axial load case) 

 

Fig. 8. Theoretical continuous CDFs fitted to the empirical CDFs of generated fLJF samples: (a) Sample 1 (1st axial load 
case), (b) Sample 2 (2nd axial load case) 

 

 
Fig. 9. The best-fitted distribution according to the Kolmogorov-Smirnov test: (a) Sample 1 (1st axial load case), (b) Sample 
2 (2nd axial load case) 

 
 
 

(a) (b) 

(a) (b) 

(a) (b) 
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Table 6. Results of the Kolmogorov-Smirnov goodness-of-fit test for fLJF sample 1 (1st axial load case) 

Fitted distribution Test statistic 
Critical value Test result 

ξ=0.05 ξ = 0.01 ξ=0.05 ξ=0.01 
Birnbaum-Saunders 0.063874 

0.1509 0.180844444 

Accept Accept 
Extreme Value 0.276059 Reject Reject 
Gamma 0.111909 Accept Accept 
Generalized Extreme Value 0.056169 Accept Accept 
Inverse Gaussian 0.055187 Accept Accept 
Log-logistic 0.069035 Accept Accept 
Lognormal 0.065211 Accept Accept 
Rayleigh 0.273597 Reject Reject 
Weibull 0.107671 Accept Accept 

 
Table 7. Results of the Kolmogorov-Smirnov goodness-of-fit test for fLJF sample 2 (2nd axial load case) 

Fitted distribution Test statistic 
Critical value Test result 

ξ=0.05 ξ = 0.01 ξ=0.05 ξ=0.01 
Birnbaum-Saunders 0.054855 

0.1509 0.180844444 

Accept Accept 
Extreme Value 0.294516 Reject Reject 
Gamma 0.101506 Accept Accept 
Generalized Extreme Value 0.052595 Accept Accept 
Inverse Gaussian 0.038857 Accept Accept 
Log-logistic 0.056989 Accept Accept 
Lognormal 0.054796 Accept Accept 
Rayleigh 0.301174 Reject Reject 
Weibull 0.091919 Accept Accept 

 

6.2. Chi-squared test 

The chi-squared test is a test of significance 
based on the chi-squared statistic. The statistic is 
derived by the sum of squares of independent 
standard normal variates. The main steps are the 
ranking of a sample of data, division into a number 
of classes depending on the magnitudes and the 
range, and the fitting of a probability distribution. 
The statistic comes from the weighted sum of 
squared differences between the observed and 
theoretical frequencies. To test whether the 
differences between the observed and expected 
frequencies are significant, following statistic is 
used: 

  2

2

1

cn
i i

i i

O E
X

E




                                                        (10) 
 

The observed frequencies Oi are found by 
multiplying the relative frequencies, for each class i 
from a total of nc classes, by the sample size n. The 
expected frequencies Ei are the products of the total 
sample size n and the areas under the PDF, as 
specified by the null hypothesis, between the 
bounds of each class i.  

A large value of the test statistic indicates a poor 
fit; so the acceptable values should be known. The 
critical value is 𝑥1−𝜉,𝑣

2  where v = nc − k − 1 represents 

the degrees of freedom and k is the number of 
parameters estimated from the same data used for 
the test. 𝑥1−𝜉,𝑣

2  is the value which a chi-squared 

variate X exceeds with probability ξ, i.e.: 
 

2
1 ,2

1 ,
0

Pr ( ) 1XX f x  dx
 

  



                              (11) 
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0
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
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The number of classes was determined based on 

(4). Results of chi-squared test for the two prepared 
samples are given in Tables 8 and 9. It is evident in 
Tables 8 and 9 that the Log-logistic and Generalized 
Extreme Value distributions have the smallest 
values of the test statistic for Samples 1 and 2, 
respectively. Hence, based on the chi-squared test, 
these are the best-fitted distributions for the 
generated samples (Fig. 10). 
 

7. Proposed probability distribution model 
for the fLJF 

The best fitted distributions for the generated fLJF 
samples were introduced in Sect. 6. It was indicated 
that according to the results of the Kolmogorov-
Smirnov test, the Inverse Gaussian distribution is 
the best probability model for both fLJF samples; 
while according to the chi-squared test, the Log-
logistic and Generalized Extreme Value 
distributions are the best probability models for 
Samples 1 and 2, respectively. 

It can be seen that the best-fitted distributions 
for the two studied samples according to the 
Kolmogorov-Smirnov and chi-squared tests include 
three different models: Inverse Gaussian, Log-
logistic, and Generalized Extreme Value 
distributions.  
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Table 8. Results of the chi-squared goodness-of-fit test for fLJF sample 1 (1st axial load case) 

Fitted distribution Test statistic 
Critical value Test result 

ξ = 0.05 ξ = 0.01 ξ=0.05 ξ=0.01 
Birnbaum-Saunders 6.495821 

14.06714045 18.47530691 

Accept Accept 
Extreme Value 832.9629 Reject Reject 
Gamma 13.11403 Accept Accept 
Generalized Extreme Value 5.913662 Accept Accept 
Inverse Gaussian 6.233059 Accept Accept 
Log-logistic 5.652407 Accept Accept 
Lognormal 5.713852 Accept Accept 
Rayleigh 727.3675 Reject Reject 
Weibull 15.03414 Reject Accept 

 
Table 9. Results of the chi-squared goodness-of-fit test for fLJF sample 2 (2nd axial load case) 

Fitted distribution Test statistic 
Critical value Test result 

ξ = 0.05 ξ = 0.01 ξ=0.05 ξ=0.01 
Birnbaum-Saunders 5.943618 

15.50731306 20.09023503 

Accept Accept 
Extreme Value 1378.228 Reject Reject 
Gamma 15.95741 Reject Accept 
Generalized Extreme Value 5.024573 Accept Accept 
Inverse Gaussian 5.035435 Accept Accept 
Log-logistic 5.240546 Accept Accept 
Lognormal 5.173702 Accept Accept 
Rayleigh 3489.074 Reject Reject 
Weibull 15.12464 Accept Accept 

    
Fig. 10. The best-fitted distributions according to the chi-squared test: (a) Sample 1 (1st axial load case), (b) Sample 2 (2nd 
axial load case) 
 

      The diversity of the best-fitted probability 
models derived for the studied fLJF values may 
practically result in the confusion and difficulty of 
their application for the reliability-based analysis 
and design. Hence, reducing the number of 
distribution types proposed for the fLJF values might 
be a good idea. In order to do so, the top three 
distribution functions for each fLJF sample were 
identified (Tables 10 and 11). The aim was to 
propose a single probability model to cover both fLJF 

samples. It should be noted that, for each sample, all 
of the three mentioned functions have acceptable fit 
according to the Kolmogorov-Smirnov and chi-
squared tests (Tables 6-9).  

After surveying the data presented in Tables 10 
and 11, the Inverse Gaussian model is proposed as 
the governing probability distribution function for 
the fLJF values. The difference between the test 
statistics of the proposed distribution and the best-
fitted one for each sample is presented in Tables 12 

and 13. Using the information presented in these 
tables, the analyst is able to make a choice, based on 
the engineering judgment, between the best-fitted 
and the proposed probability models for each of the 
four studied load cases. 

The PDF of the Inverse Gaussian distribution is 
expressed as: 
 

𝑓𝑋(𝑥) =  √
𝜆

2𝜋𝑥3  exp {−
𝜆

2𝜇2𝑥
 (𝑥 − 𝜇)2} (14) 

 
After substituting the values of estimated 

parameters from Table 5, following probability 
density functions are proposed for the fLJF values in 
two-planar tubular DK-joints subjected to the two 
considered axial load cases defined in Fig. 1c:  

1st axial load case: 

𝑓𝑋(𝑥) =  √
4.4009

𝑥3  exp {−
0.0309

𝑥
 (𝑥 − 21.1588)2} (15) 

(a) (b) 
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Table 10. Best-fitted distributions for the fLJF samples based on the results of the Kolmogorov-Smirnov test 

Best-fitted distributions 
fLJF samples 

Sample 1 (1st axial load case) Sample 2 (2nd axial load case) 

# 1 Inverse Gaussian Inverse Gaussian 

# 2 Generalized Extreme Value Generalized Extreme Value 

# 3 Birnbaum-Saunders Lognormal 

 
Table 11. Best-fitted distributions for the fLJF samples based on the results of the chi-squared test 

Best-fitted distributions 
fLJF samples 

Sample 1 (1st axial load case) Sample 2 (2nd axial load case) 

# 1 Log-logistic Generalized Extreme Value 

# 2 Lognormal Inverse Gaussian 

# 3 Generalized Extreme Value Lognormal 

 
Table 12. Comparison of the test statistics for the proposed and the best-fitted distributions based on the results of the 
Kolmogorov-Smirnov test 

 
Test statistic 

Sample 1 (1st axial load case) Sample 2 (2nd axial load case) 

Best-fitted distribution 0.055187 (Inverse Gaussian) 0.038857 (Inverse Gaussian) 

Proposed distribution 0.055187 (Inverse Gaussian) 0.038857 (Inverse Gaussian) 

Difference 0% 0% 

Table 13. Comparison of the test statistics for the proposed and the best-fitted distributions based on the results of the chi-
squared test 

 
Test statistic 

Sample 1 (1st axial load case) Sample 2 (2nd axial load case) 

Best-fitted distribution 5.652407 (Log-logistic) 5.024573 (Generalized Extreme Value) 

Proposed distribution 6.233059 (Inverse Gaussian) 5.035435 (Inverse Gaussian) 

Difference 10.27% 0.22% 

 
2nd axial load case: 

𝑓𝑋(𝑥) =  √
3.5791

𝑥3  exp {−
0.0258

𝑥
 (𝑥 − 20.8825)2} (16) 

 
where X denotes the fLJF as a random variable and x 
represents its values. 

Suggested PDFs can be adapted in the reliability-
based analysis and design of axially loaded two-
planar tubular DK-joints commonly used in offshore 
jacket-type wind turbines and oil/gas production 
platforms. 
 

8. Conclusions 

A total of 162 FE analyses were carried out on 81 
FE models of two-planar tubular DK-joints 
subjected to two types of axial load cases. Generated 
FE models were validated using the available 
experimental data, FE results, and design formulas. 
FE analysis results were used to develop a set of 
PDFs for the fLJF in axially loaded DK-joints. Based on 
a parametric FE investigation, two samples were 
created for the fLJF and density histograms were 

generated for these samples. Nine theoretical PDFs 
were fitted to the developed histograms and the ML 
method was applied to evaluate the parameters of 
fitted PDFs. In each case, the Kolmogorov-Smirnov 
and chi-squared tests were used to assess the 
goodness of fit. Finally, the Inverse Gaussian model 
was suggested as the governing probability 
distribution function for the fLJF. After substituting 
the values of estimated parameters, two fully 
defined PDFs were presented for the fLJF in two-
planar tubular DK-joints under two types of axial 
loading. 
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