ارزیابی اثر پیش‌تنیدگی مهارهای فولادی بر جابه‌جایی دیوار دیافراگمی و خاک

نوع مقاله : مقاله کامل پژوهشی

نویسندگان

دانشکده مهندسی عمران، دانشگاه سمنان

10.22034/ceej.2018.8236

چکیده

آرایش استرات‌ها در ارتفاع دیوارهای دیافراگمی در گودبرداری‌های عمیق، دارای محدودیت‌هایی برای تأمین فضای اجرایی مناسب است. به ‌منظور کاهش تغییر مکان افقی دیوار، از اعمال پیش‌تنیدگی به مهارها می‌توان استفاده کرد. در این مقاله اثر اعمال پیش‌تنیدگی به مهارهای فولادی بر رفتار دیوار دیافراگمی به ‌منظور کاهش نشست خاک پشت دیوار ارزیابی گردیده است. تعدادی دیوار دیافراگمی با ارتفاع ۲۰ متر و ضخامت ۸۰ سانتی‌متر با عمق نهایی گود ۱۲ متر به روش عددی تفاضل محدود مورد بررسی قرار گرفته است. دیوار دیافراگمی در سه نوع خاک ماسه‌ای، در سه تراز آب مختلف، تحت ۳ حالت بدون پیش‌تنیدگی، ۲۰۰ و ۴۰۰ کیلونیوتن پیش‌تنیدگی مهار، مدل‌سازی گردیده که نتایج حاصل از ۲۷ مدل ساخته‌شده بیان‌گر آن است که اعمال پیش‌تنیدگی به مهارها موجب تغییر مکان افقی دیوار در ناحیه غیر مدفون دیوار می‌گردد؛ اما بر جابه‌جایی افقی دیوار در نواحی عمیق دیوار چندان اثرگذار نیست. بررسی‌های پژوهش حاضر مشخص نمود که با افزایش مدول الاستیک خاک و بالا بودن تراز آب زیرزمینی، حداکثر تغییر مکان افقی دیوار از پای دیوار به اواسط دیوار منتقل می‌گردد و از همین رو در خاک‌های با مدول الاستیک بالا و اشباع، مهارها توانایی بهتری برای کاهش حداکثر تغییر مکان افقی دیوار دارند. از آنجا که کاهش حداکثر تغییر مکان افقی دیوار منجر به کاهش حداکثر نشست خاک می‌گردد؛ با افزایش مدول الاستیک خاک و تراز آب زیرزمینی اثرگذاری پیش‌تنیدگی مهارها بر کاهش حداکثر میزان نشست خاک تشدید می‌گردد. از این‌ رو، روش اعمال پیش‌تنیدگی به مهارها به ‌منظور کاهش نشست خاک پشت دیوار، مناسب خاک‌های با مدول الاستیک و تراز آب زیرزمینی بالاست.

کلیدواژه‌ها


عنوان مقاله [English]

Assessment of the Effect of Pre-stressing Steel Strut on Displacement of the Diaphragm Wall and the Soil

نویسندگان [English]

  • Mohammad Bahrami
  • Mohammad Iman Khodakarami
  • AbdolHossein Haddad
Faculty of Civil Engineering, Semnan University
چکیده [English]

In this research, the effects of pre-stressing steel struts on horizontal displacement of the diaphragm wall and settlement of the soil behind the wall are investigated utilizing the FLAC software through implementing the finite difference method and Mohr-Coulomb behavior model. A 20m diaphragm wall with 80 cm thickness and the Young's Modulus of 22000 MPa and the Poisson ratio of 0.15 is modeled. The final depth of excavation is 12 m and the properties corresponding to the concrete stiffness of the diaphragm wall, depth of excavation and arrangement of the struts are taken from (Freiseder and Schweiger, 1998). Modeling is done for 3 types of soils with different modulus of elasticity values including 3 pre-stressing forces and 3 different water levels, so totally 27 models were designed and analyzed. For this purpose 3 types of sandy soils with a Poisson ratio of 0.30 are used for modeling. The soils properties are taken from Chowdhury et al. (2013) and are given in Table 1. In this table 'φ denotes the internal friction angle and C 'denotes the soil's cohesion. This research is conducted for 3 water levels; at the ground level and for depths of 4 and 8 m below the ground level. The models are analyzed for three cases namely non-pre-stressing and pre-stressing forces of 200 and 400 KN.

کلیدواژه‌ها [English]

  • Diaphragm wall
  • Pre-stressing
  • Strut
  • Deep excavation
  • FLAC
اشرفی ح، " اصول و مبانی گودبرداری و سازه‌های نگهبان"،وزارت مسکن و شهرسازی، معاونت امور مسکن و ساختمان، دفتر تدوین و ترویج مقررات ملی ساختمان، 1385.
حداد ع، جاودانیان ح، مهرزاد ب، "گودبرداری‌های عمیق: مبانی نظری و اجرایی"، دانشگاه سمنان، 1394.
قضاوی م، مشفق یگانه م، "محاسبه نیروی لرزه‌ای وارد بر دیوار حائل و محل اثر آن در خاک‌های ماسه‌ای چند لایه"،نشریه مهندسی عمران و محیط زیست تبریز، 1392، 42 (2).
وطن‌پور آ، ستوده ع، فرهیخته ع، "روش‌های طراحی و اجرای سازه‌های حفاظت موقت ایستگاه‌های مترو"، جهاد دانشگاهی واحد صنعتی امیرکبیر، تهران، 1389.
American Institute of Steel Construction (AISC), “Manual of steel construction, Allowable stress design”, USA, 2001.
Chowdhury S, Deb K, Sengupta A, “Estimation of Design Parameters for Braced Excavation: Numerical Study”, International Journal of Geomechanics, ASCE, 2013, 13 (3), 234-247.
Clough, GW, O’Rourke TD, “Construction Induced Movements of In-Situ Walls”, Design and Performance of Earth Retaining Structures Conference, ASCE special publication, 1990.
Freiseder MG, Schweiger HF, “Numerical Analysis of Deep Excavations”, Proceedings of Application of Numerical Methods to Geotechnical Problems, 1998, 283-292.
Hashash YMA, Whittle, AJ, “Ground Movement Prediction for Deep Excavations in Soft Clay”, Journal of Geotechnical Engineering, 1990, 122 (6), 474-486.
Hsieh PG, Ou CY, “Shape of Ground Surface Settlement Profiles Caused By Excavation”, Canadian Geotechnical Journal, 1998, 35, 1004-1017.
Hsiung BC, “A Case Study on the Behaviour of a Deep Excavation in Sand”, Computers and Geotechnics, 2009, 36 (4), 665-675.
Hsiung BC, Dao SD, “Evaluation of Constitutive Soil Models for Predicting Movements Caused by a Deep Excavation in Sands”, The Electronic Journal of Geotechnical Engineering, 2014, 19, 17325-17344.
Hwang RN, Za- Cjieg M, Wang HC, “Toe Movements of Diaphragm Walls and Correction of Inclinometer Readings”, Journal of Geoengineering, 2007, 2 (2), 61-71.
Itasca, “User’s guide for FLAC version 7.0”, Itasca Consulting groupInc., Minnesota, US, 2011.
Kung GTC, Juang CH, Hsiao ECL, Hashash YMA, “Simplified Model for Wall Deflection and Ground Surface Settlement Caused By Braced Excavation in Clays”, Geotechnical and Geoenvironmental Engineering, 2007, 133 (6), 731-747.
Ou CY, “Deep Excavation: Theory and Practice”, CRC Press, UK, 2006.
Ou CY, Liao JT, Lin HD, “Performance of Diaphragm Wall Constructed Using Top Down Method”, Geotech Geoenviron Eng, 1998, 124 (9), 798-808.
Pakbaz M, Imanzadeh S, Bagherinia KH, “Characteristics of Diaphragm Wall Lateral Deformations and Ground Surface Settlements: Case Study in Iran-Ahwaz Metro”, Tunnelling and Underground Space Technology, 2013, 35, 109-121.