تخمیـن فشار متوسط دینامیکی در جریان‏های دوفازی آب و هوا با استفاده از شبکه-های عصبی مصنوعی و سیستم عصبی- فازی تطبیقی

نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 دانشکده مهندسی عمران، دانشگاه صنعتی اصفهان

2 دانشکده عمران، دانشگاه صنعتی اصفهان

3 دانشکده مهندسی برق و کامپیوتر، دانشگاه صنعتی اصفهان

10.22034/ceej.2018.7911

چکیده

     جریان دوفازی در سازه­های گوناگون از جمله سیستم­های انتقال آب و خطوط لوله دریایی انتقال نفت و در سازه­های هیدرولیکی از جمله سرریز­های نیلوفری، شفت­های قائم، کالورت­ها و تونل­ها و مجاری بسته اتفاق می­افتد. پیش­بینی فشار دینامیکی در جریان­های دوفازی جهت طراحی بهینه و مناسب و جلوگیری از وقوع مشکلات ناخواسته در اثر ایجاد جریان­های دوفازی امری ضروری است. در این تحقیق مدل­هایی جامع جهت پیش­بینی فشار دینامیکی در جریان­های دوفازی آب و هوا با استفاده از شبکه­های عصبی و سیستم عصبی- فازی تطبیقی (انفیس) ارائه می­شود. از آن­جایی که مدل انفیس در مواجهه با فرآیند­های پیچیده با تعداد پارامترهای زیاد، قوانین زیادی تولید می­کند و حجم محاسبات را بیش­تر می­کند، استفاده از پیش­پردازش خوشه­بندی فازی کارآیی مدل انفیس را بیش­تر و حجم محاسبات را کمتر می­کند. استفاده از آلگوریتم بهینه­سازی ازدحام ذرات یکی دیگر از تکنیک­های بهبود نتایج در این تحقیق است. در این پژوهش برای تنظیم وزن­ها و بایاس­های شبکه­های عصبی از آلگوریتم ازدحام ذرات استفاده شده است. در مدل­های انفیس نیز در رابطه با تنظیم پارامترها، الگوریتم ترکیبی ازدحام ذرات و حداقل مربعات استفاده شده است. در این بررسی مشخص شد که نتایج حاصل از مدل­های انفیس همراه با پیش­پردازش خوشه­بندی فازی و آلگوریتم بهینه­سازی ازدحام ذرات دارای دقت بالاتری هستند.

کلیدواژه‌ها


عنوان مقاله [English]

Estimation of Dynamic Pressure in Two-Phase Air-Water Flow Using ANN and ANFIS

نویسندگان [English]

  • Faezeh Moghadas 1
  • Abdorreza Kabiri-Samani 2
  • Maryam Zekri 3
1 Department of Civil Engineering, Isfahan University of Technology
2 Department of Civil Engineering, Isfahan University of Technology
3 Department of Electrical and Computer Engineering, Isfahan University of Technology
چکیده [English]

Two phase gas-liquid flows occur in a wide variety of situations, i.e., in water supply systems, petroleum industry, pressurized tunnels and pipelines, culverts and water conduits (Mishima and Hibiki, 1996, Kabiri-Samani and Borghei, 2010). Air entrainment into a pipeline is a result of vortices at water intakes. Due to the severity of two-phase air-water flow at hydraulic systems, estimation of the dynamic pressure and pressure fluctuations in such systems is of great importance in practice (Yan et al., 2014). Most of the former studies have focused on two-phase gas-liquid flow in micro-channels and small pipelines, however, there is a lack of fundamental studies on pipelines with larger dimensions as used in hydraulic systems. Recently, some computational intelligence approaches such as ANN and ANFIS are very effectively used to predict complex problems with several parameters involved (Jang et al., 1997, Sebakhi, 2010, Fan and Yan, 2014). The present study focuses on estimation of dynamic pressure in two-phase air-water flow using ANN and ANFIS combined with PSO algorithm and subtractive clustering technique.

کلیدواژه‌ها [English]

  • Air-water flow
  • ANN and ANFIS models
  • APSO algorithm
  • dynamic pressure
  • two phase flow
باقری س، قیصری م، ایوبی ش، لوایی ن، "پیش­بینی عملکرد ذرت علوفه­ای با استفاده از شبکه­های عصبی مصنوعی"، مجله پژوهش­های تولید گیاهی، 1391، جلد نوزدهم، شماره چهارم، 77-95.
کبیری سامانی ع­ر، برقعی س­م، سعیدی م­ح، "بررسی آزمایشگاهی نوسانات فشار در مقطع مجاری آب­بر حاوی جریان ناپایار آب و هوا"، مجله استقلال، 1384، سال 22، شماره 2، 69-86.
De Maesschalk R, Jouan-Rimbaud D, Massart DL, “The mahalanobis distance”, Chemometrics and Intelligent LaboratorySystems, 2000, 50(1), 1-18.
Eberhart RC, Kennedy J, “A new optimizer using particle swarm theory”, Sixth International Symposium on Micro Machine and Human Science, IEEE Service Center, Piscataway, NJ,1995, 39-43.
Fan S, Yan T, “Two-phase air-water slug flow measurement in horizontal pipe using conductance probes and neural networks”, IEEE Transaction on Instrumentation and Measurement, 2014, 63(2), 456-466.
Jang JSR, Sun CT, Mizutani E, “Neuro-Fuzzy modeling and soft computing”, Prentice Hall, Englewood Cliffs, 1997.
Kabiri-Samani AR, Borghei SM, Saidi MH, “Fluctuations of air-water two-phase flow in horizontal and inclined water pipelines”, Journal of fluid Engineering. ASME, 2007, 129(1), 1-14.
Kabiri-Samani AR, Borghei SM, “Pressure loss in a horizontal two-phase slug flow”, Journal of Fluids Engineering, 2010, 132(7).
Martin CS, “Entrapped air in pipelines”,  Proceedings of the 2nd International Conference on Pressure Surges, BHRA Fluid Engineering, Cranfield, Bedford, England,1976.
Mishima K, Hibiki T, “Some characteristics of air-water two-phase flow in small diameter vertical tubes”, International Journal of Multiphase Flow, 1996, 22(4), 703-712.
Rodriguez JD, Perez A, Lozano JA, “Sensitivity analysis of k-fold cross validation in prediction error estimation”, Pattern Analysis and Machine, 2009, 32(3), 569-575.
Rosa E, Salgado RM, Ohishi T, Mastelari N, “Performance comparison of artificial neural networks and expert systems applied to flow pattern identification in vertical ascendant gas-liquid flows”, International Journal of Multiphase Flow, 2010, 36(9), 738-754.
Sebakhi E, “Flow regimes identification and liquid holdup prediction in horizontal multiphase flow based on neuro-fuzzy inference systems”, Mathematics and Computers in Simulation, 2010, 80(9), 1854-1866.
Shi L, “Fuzzy recognition for gas-liquid two- phase flow pattern based on image processing”, Control and Automation, IEEE International Confrance on Control and Automation, 2007, DOI: 10.1109/ICCA.2007.4376595, pp.1424-1427.
Shi Y, Eberhart RC, “Parameter Selection in particle swarm optimization”, Evolutionary Programming, 1998, 1447, 591-600.
StatSoft T, “Electronic Statistics Textbook”, 2007. www.statsoft.com/textbook
Xu Y, Frang X, “A New correlation of two-phase frictional pressure drop for condensing flow in pipes”, Nuclear Engineering and Design, 2013, 263, 87-96.
Xu Y, Su X, Zhou Z, Chen W, “Evalution of frictional pressure drop correlations for two-phase flow in pipes”, Nuclear Engineering and Design, 2012, 253, 86-97.
Yan C, Yan C, Sun L, Wang Y, Zhang X, “Slug behavior and pressure drop of adiabatic slug flow in a narrow rectangular duct under inclined conditions”, Annals of Nuclear Energy, 2014, 64, 21-31.
Zhang W, Hibiki K, Mishima K, “Correlations of two-phase frictional pressure drop and void fraction in mini channel”, International Journal of Heat and Mass, 2010, 53(1-3), 453-465.