قالب‌ تونلی سیستمی ایده‌آل برای سازه‌های بتن‌آرمه تحت زلزله‌های متوالی

نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 دانشکده مهندسی عمران، دانشگاه علم و فرهنگ تهران

2 دانشکده مهندسی عمران، دانشگاه صنعتی خواجه نصیرالدین طوسی

3 دانشکده مهندسی عمران، دانشگاه شاهرود

چکیده

وجود پتانسیل آسیب‌پذیری تحت پس­لرزه‌ها، حتی در بسیاری از ساختمان‌هایی که بر اساس آیین‌نامه‌های طراحی لرزه‌ای معتبر طراحی شده‌اند، لزوم توجه به استفاده از یک سیستم مطمئن، بخصوص در مناطق لرزه‌خیز را آشکار می‌سازد. تجارب زلزله‌های پیشین و نتایج مطالعات صورت گرفته روی سیستم قالب‌ تونلی مبین مقاومت بسیار قابل توجه این قبیل سازه‌ها در برابر زلزله‌های قوی می‌باشد. تاکنون مطالعه‌ای جهت بررسی مقاومت این سازه­ها تحت زلزله­های متوالی انجام نشده است. به نظر می‌رسد که این سیستم سازه‌ای، تحت زلزله‌های متوالی از اطمینان سلامت قابل قبولی برخوردار است. هدف این مطالعه، بررسی ظرفیت باقی­مانده ساختمان‌های قالب ‌تونلی آسیب‌دیده بعد از وقوع لرزش اصلی و نحوه عملکرد آنها تحت زلزله‌های متوالی حاوی لرزش اصلی و پس­لرزه بوده است. بدین منظور، بعد از اعمال لرزش اصلی معادل با زلزله طرح استاندارد 2800 ایران، ساختمان‌های آسیب‌دیده، تحت تحلیل‌های دینامیکی افزایشی ناشی از پس­لرزه­ها و بارافزون قرار گرفته‌اند. ارائه منحنی‌های شکنندگی برای سطوح مختلف خرابی به وجود آمده در المان‌های اصلی قبل و بعد از وقوع لرزش اصلی، از دیگر دستاوردهای این پژوهش است. نتایج بیانگر ظرفیت و مقاومت بالای سیستم قالب ‌تونلی در زلزله‌های متوالی و تأمین سطح عملکرد قابلیت استفاده بی‌وقفه در زلزله طرح استاندارد 2800 می‌باشد. با استناد به نتایج حاصل از این مطالعه، نتیجه گردید که عدم آسیب قابل توجه تحت لرزش اصلی متناظر به خطر طراحی ساختگاه، بیشترین شانس را جهت تحمل پس­لرزه‌ها برای این سیستم نوظهور فراهم کرده است. به علاوه، مشخص شد که اجزای اصلی در این ساختمان‌ها، حتی تحت پس­لرزه‌های نسبتاً قوی نیز، با احتمال ناچیزی به سطح عملکردی نامبرده می‌رسند.

کلیدواژه‌ها


عنوان مقاله [English]

Tunnel Form as an Ideal System for RC Constructions under Multiple Earthquakes

نویسندگان [English]

  • Vahid Mohsenian 1
  • S. Bahram Beheshti-Aval 2
  • Reza Darbanian 3
1 Department of Civil Engineering, University of Science & Culture
2 K. N. Toosi University of Technology, Faculty of Civil Engineering
3 Department of Civil Engineering, University of Shahrood
چکیده [English]

In view of potential vulnerability of even exciting buildings designed based on seismic design codes under consecutive strong earthquakes, paying attention to the use of a secure system, especially in earthquake-prone regions is revealed. Tunnel form system is a new industrial construction system in which only the slabs and walls are used as lateral load resisting elements (Balkaya and Kalkan, 2004). Naming this system as the tunnel form is due to the installation of formworks in box manner (Fig. 1) (Mirghaderi et al., 2009).
Previous earthquake experience and the results of laboratory and numerical studies of lateral resistance of tunnel form construction represent a very significant performance against strong earthquakes. So far no study has been conducted to assess the resistance of this construction system subjected to consecutive earthquakes. It seems that this structural system is able to retain safety against successive earthquakes. This study aims to quantify the post-earthquake capacity of the damaged tunnel form buildings after subjecting the main shock and also their performance assessment subjected to multiple earthquakes.

کلیدواژه‌ها [English]

  • Tunnel form system
  • Aftershock
  • Multiple records
  • Incremental dynamic analysis
  • Fragility curves
آقایی آ‌س، رضاپور م، "بررسی پس­لرزه‌های زمین لرزه اهر-ورزقان"، مجموعه مقالات شانزدهمین کنفرانس ژئوفیزیک ایران،23 تا 25 اردیبهشت، 1393، صفحات 393 تا 397.
بهشتی‌اول س‌ب، "بهسازی لرزه‌ای ساختمان‌های موجود"، انتشارات دانشگاه صنعتی خواجه نصیرالدین طوسی، جلد اول، چاپ اول، 1391، 131- 146.
بهشتی‌اول س‌ب، محسنیان و، نیک‌پور ن، "مشخصات لرزه‌ای سازه‌های بتنی قالب ‌تونلی با پلان نامنظم"، مجله علمی- ‌پژوهشی مکانیک سازه‌ها و شاره‌ها، 1394، (3) 5، 1-15.
زارع م، "کیفیت واکنش به زمین لرزه وان ترکیه با بزرگای 2/7"، دانش مخاطرات، دوره 1، شماره2، 1393، 189-202.
فناوری‌های تأیید شده در راستای جزء 2-6، بند "د"، تبصره 6، "گامی در صنعتی‌سازی ساختمان"، ویرایش اول، انتشارات مرکز تحقیقات ساختمان و مسکن، 1386، صفحات 21 و 22.
محسنیان و، "تعیین ضریب رفتار برای سازه‌های بتنی قالب ‌تونلی"، پایان‌نامه کارشناسی ارشد مهندسی عمران، گرایش زلزله، دانشگاه علم و فرهنگ تهران، 1391.
محسنیان و، بهشتی‌اول س‌ب، دربانیان ر، "روش زمان ‌دوام، جایگزینی مناسب برای روش مرسوم تحلیل دینامیکی در تخمین رفتار لرزه‌ای ساختمان‌های بتنی قالب ‌تونلی"، نشریه علمی- ‌پژوهشی عمران شریف، پذیرفته شده و در شرف چاپ، 1396.
ACI Committee 318, “Building Code Requirements for structural concrete (ACI318-14) and commentary”, American Concrete Institute, 2014.
ASCE, “Seismic Rehabilitation of Existing Buildings”, ASCE/SEI41-13, American Society of Civil Engineers, 2014.
Balkaya C, Kalkan E, “Seismic Vulnerability, Behavior and Design of Tunnel Form Building Structures, Engineering Structures”, 26(14), 2004, 2081-2099.
Berahman F, Behnamfar F, “Seismic Fragility Curves for Un Anchored on-Grade Steel Storage Tanks: Bayesian Approach”, Journal of Earthquake Engineering, 11, 2007, 166-192.
Cimellaro GP, Reinhorn AM, Bruneau M, Rutenberg A, “Multi-Dimensional Fragility of Structures: Formulation and Evaluation”, Technical Report MCEER-06-0002, 2006.
Computers and Structures Inc. (CSI), Structural and Earthquake Engineering Software, ETABS, Extended Three Dimensional Analysis of Building Systems Nonlinear, Version 15.2.2, Berkeley, CA, USA, 2015.
Computers and Structures Inc. (CSI), PERFORM-3D Nonlinear Analysis and Performance Assessment for 3-D Structures, User Guide, Version 4, August 2006, Berkeley, CA, USA.
Computers and Structures Inc. (CSI), Structural and Earthquake Engineering Software, PERFORM-3D Nonlinear Analysis and Performance Assessment for 3-D Structures, Version 4.0.3, Berkeley, CA, USA, 2007.
Faisal A, Majid TA, Hatzigeorgiou GD, “Investigation of Story Ductility Demands of Inelastic Concrete Frames Subjected to Repeated Earthquakes”, Soil Dynamics and Earthquake Engineering, 44, 2013, 42–53.
Hatzigeorgiou GD, “Ductility Demand Spectra for Multiple Near-and Far-Fault Earthquakes”, Soil Dynamics Earthquake Engineering, 30, 2010, 170-183.
Hatzigeorgiou GD, Beskos DE, “Inelastic Displacement Ratios for SDOF Structures Subjected to Repeated Earthquakes”, Engineering Structures, 31, 2009, 2744–2755.
Hatzigeorgiou GD, Liolios AA, “Nonlinear Behaviour of RC Frames Under Repeated Strong Ground Motions”, Soil Dynamics Earthquake Engineering, 30, 2010, 1010–1025.
Khalvati AH, Hosseini M, “A New Methodology to Evaluate The Seismic Risk of Electrical Power Substations”, 14th World Conference on Earthquake Engineering, Beijing, China, 12-17 October, 2008.
Lee K, Foutch DA, “Performance Evaluation of Damaged Steel Frame Buildings Subjected to Seismic Loads”, Journal of Structural Engineering, 130 (4), 2004, 588-599.
Li Y, Song R, Van De Lindt J, “Collapse Fragility of Steel Structures Subjected to Earthquake Mainshock-Aftershock Sequences”, Journal of Structural Engineering, 140 (12), 2014, 04014095.
Luco N, Bazzurro P, Cornell CA, “Dynamic Versus Static Computation of The Residual Capacity of Main-Shock-Damaged Building to Withstand an After-Shock”, Proceedings 13th World Conference on Earthquake Engineering,Vancouver, Canada, 2004, Paper No. 2405.
Mahin SA, “Effects of Duration and After-Shocks on Inelastic Design Earthquakes”, Proceedings of the Seventh World Conference on Earthquake Engineering, 5, 1980, 677-9.
Paulay T, Binney JR, “Diagonally Reinforced Coupling Beams of Shear-Walls”, ACI Special Publications, SP-42, 1974.
PEER Ground Motion Database, Pacific Earthquake Engineering Research Center, Web Site: http://peer.berkeley.edu/peer_ground_motion_database.
Permanent Committee for Revising the Standard 2800, “Iranian code of practice for seismic resistant design of buildings”, Building and Housing Research Center, Tehran, Iran, 2014.
Ruiz-García J, Moreno JY, Maldonado, I.A., “Evaluation of Existing Mexican High­way Bridges under Main-Shock–After-Shock Seismic Sequences”, Proceedings of the 14th World Conference on Earthquake Engineering, 2008, Paper 05-02-0090.
Ruiz-García J, Negrete-Manriquez J, “Evaluation of Drift Demands In Existing Steel Frames Under As-Recorded Far-Field and Near-Fault Mainshock-Aftershock Seismic Sequences”, Engineering Structures, 33(2), 2011, 621-634.
Song R, Li Y, Van De Lindt J, “Impact of Earthquake Ground Motion Characteristics on Collapse Risk of Post-Mainshock Buildings Considering Aftershocks, Engineering Structures”, 81, 2014, 349–361.
Sunasaka Y, Kiremidjian A, “A Method for Structural Safety Evaluation under Main-Shock–After-Shock Earthquake Sequences”, Report No. 105, the John A. Blume Earthquake Engineering Center, 1993, Stanford University.
Technical Criteria Codification & Earthquake Risk Reduction Affairs Bureau, “Instruction for seismic rehabilitation of existing buildings”, No.360, Management and Planning Organization, Iran, 2014.
Vamvatsikos D, Cornell CA, “Incremental Dynamic Analysis”, Earthquake Engineering Structural Dynamics, 31(3), 2002, 491-514.
Web Site:
http://www.iiees.ac.ir/fa/1390-2011-37mw/.