بررسی عددی اثر نسبی عرض کانال در آبگیر‌های جانبی بر منحنی‌های توزیع سرعت در محل انحراف جریان

نوع مقاله : یادداشت پژوهشی

نویسندگان

1 دانشگاه رازی کرمانشاه

2 گروه مهندسی عمران، دانشکده فنی مهندسی دانشگاه رازی کرمانشاه

چکیده

آبگیر­های جانبی برای انحراف و انتقال جریان در سیستم­های هیدرولیکی استفاده می­شوند. نصب فلومتر­ها یکی از رایج­ترین روش­های اندازه­گیری سرعت و یا دبی در کانال­های روباز می­باشد. فلومتر­ها به کمک اندازه­گیری سرعت متوسط در حجم محدودی از جریان با استفاده از یک ضریب کالیبراسیون، سرعت متوسط مقطع را محاسبه می­کنند. در نزدیکی محل آبگیر به دلیل ماهیت سه­بعدی و پیچیده جریان و وجود جریان­های ثانویه قوی در مقطع عرضی، سرعت اندازه­گیری شده توسط فلومتر در ناحیه محدود مورد اندازه­گیری توسط سنسور، با سرعت متوسط واقعی کانال اختلاف دارد. اما با وجود این اختلاف، میانگین سرعت­های اندازه­گیری شده توسط فلومتر مطابقت نسبتاً خوبی با سرعت متوسط واقعی کانال دارد. سرعت جریان­های عبوری و ابعاد هندسی کانال­های فرعی و اصلی بر روی اختلاف بین سرعت اندازه­گیری شده توسط فلومتر و سرعت متوسط واقعی جریان مؤثر هستند. در این مطالعه، مدل آزمایشگاهی آبگیر جانبی به صورت سه­بعدی با استفاده از نرم­افزارANSYS-CFX ، شبیه­سازی شده است. بعد از صحت­سنجی با استفاده از مدل عددی و نتایج مدل آزمایشگاهی، دقت اندازه­گیری فلومتر در نسبت عرض­های مختلف کانال اصلی به کانال فرعی مورد بررسی قرار گرفت. نتایج نشان می­دهند که با افزایش نسبت عرض کانال فرعی به کانال اصلی از 6/0 تا 1، حداکثر خطای اندازه­گیری فلومتر از 18 درصد تا 139 درصد افزایش می­یابد. با افزایش بیشتر عرض در کانال فرعی به دلیل کاهش سرعت، میزان خطای فلومتر کاهش می­یابد، به طوری که در نسبت عرضی 4/1 این خطا به 47 درصد می­رسد.

کلیدواژه‌ها


عنوان مقاله [English]

Numerical Examination of the Relative Effect of the Channel Width in the Intakes on the Velocity Distribution Curves in the Flow Deviation Location

نویسندگان [English]

  • Sohrab Karimi 1
  • Hossein Bonakdari 2
  • Amir Hossein Zaji 1
1 Department of Civil Engineering, Razi University, Kermanshah
2 Department of Civil Engineering, Razi University, Kermanshah

کلیدواژه‌ها [English]

  • Intakes
  • Channel width
  • Velocity distribution
  • Flowmeter
  • ANSYS- CFX software
[1]     احمدی، م.، بنکداری، ح.، اختری، ع. ا.، "تأثیر دبی بر خطای اندازه­گیری سرعت پس از انحراف مسیر کانال به وسیله سنسورهای التراسونیک داپلر"، دوازدهمین کنفرانس هیدرولیک ایران، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، آبان، 1392.
[2]     احمدی، م.، بنکداری، ح.، "ضریب کالیبراسیون اندازه­گیری سرعت در انحراف مسیر کانال­های باز"، نهمین سمینار بین‌المللی مهندسی رودخانه، دانشگاه شهید چمران، اهواز، ایران، بهمن، 1391.
[3]        Taylor, E., "Flow Characteristics at Rectangular Open Channel Junction", Journal of Hydraulic Engineering, 1944, 10 (6), 893-902.
[4]        Lakshmana, R. N. S., Sridharan, K., Baig, M. Y. A., "Experimental Study of the Division of Flow in an Open Channel", Australasian Conference on Hydraulics and Fluid Mechanics Sydney, Australia, 1968, pp 139-142.
[5]        Kasthuri, B., Pundarikanthan, N. V., "Discussion of 'Separation Zone at Open Channel Junction", Journal of hydraulic Engineering, 1987, 113 (4), 543-544.
[6]        Neary, V. S., Odgaard, A. J., "Three-Dimensional Flow Structure at Open Channel Diversions", Journal of Hydraulic Engineering, 1993, 119 (11), 1224-1230.
[7]        Barkdoll, B., "Sediment Control at Lateral Diversion", PhD Thesis, Department. of Civil and Environmental Engineering, University of Iowa, US, 1997.
[8]        Ramamurthy, A., Qu, J., VO, D., "Numerical and Experimental Study of Dividing Open-Channel Flows", Journal of Hydraulic Engineering, 2007, 133 (10), 1135-1144.
[9]        Issa, R. I., Oliveira, P. J., "Numerical Prediction of Phase Separation in Two-Phase Flow through T-junction", Computational and Fluids, 1994, 23 (2), 347-356.
[10]     Neary, V. S., Sotiropoulos, F., "Numerical Investigation of Laminar Flows Through 90-Degree Diversions of Rectangular Cross-sec-Tion", Computational and Fluids, 1996, 25 (2), 95-118.
[11]     Neary, V. S., Odgaard, A., Sotiropoulos, F., "Three-Dimensional Numerical Model of Lateral-Intake Inflows", Journal of Hydraulic Engineering, 1999, 125 (2), 126-140.
[12]     Bonakdari, H., Zinatizadeh, A. A. L., "Determination of Doppler Flow Meters Position in Sewers using Computational Fluid Dynamics", Flow Measurement and Instrumentation, 2011, 22, 225-234.
[13]     Hughes, A. W., Longair. I. M., Ashley, R. M., Kirby, K., "Using an Array of Ultrasonic Velocity Transducers to Improve the Accuracy of Large Sewer Mean Velocity Measurements", Water Science and Technology, 1996, 33 (1), 1-12.
[14]     Bonakdari, H., Tahershamsi, A., Shahrezaee R., Zinatizadeh, A. A., Levacher, D., "Effect of the Angle of Alignment Deviation on the Velocity Field in Down Stream of the Bends", the 33rd Congress of IAHR, the International Association of Hydraulic Enginnering & Research, 10-14 August, Vanvouver, British Columbia, Canada, 2009.
[15]     Koelling, C., "A New Finite Element Model Significantly Improves the Accuracy of Flow Measurements in Sewers", 7th International Conference on Urban Sorm Drainage, 1996, pp 665-670.
[16]     Bonakdari, H., Baghalian, S., Nazari, F., Fazli, M., "Numerical analysis and prediction of the velocity field in curved open channel using Artificial Neural Network and Genetic Algorithm", Engineering Application of Computational Fluid Mechanics, 2011, 5 (3), 384-396.
[17]     Larrarte, F., Bardiaux, J. B., Battaglia, P., Joannis, C., "Acoustic Doppler Flow-Meters: A Proposal to Characterize their Technical Parameters", Flow Meas Instrum, 2008, 19 (5), 261-267.
[18]     Nivus., "Installation manual Doppler pipesensors and wedge sensors", 1999, 49 p.
[19]     Mignot, E. et al., "Experiments and 3D Simulations of Flow Structures in Junctions and their Influence on Location of Flowmeters", Water Science and Technology, 2012, 66 (6), 1325-1332.
[20]     Bonakdari, H., Larrarte, F., Joannis, C., "Effect of a Bend on the Velocity Field in a Circular Sewer with free Surface Flow", 6th International Conference on Sustainable Techniques and Strategies in Urban Water Management, NOVATECH 2007, June, Lyon, France, 2007.
[21]     Hilgenstock, A., Ernst, R., "Analysis of Installation Effects by Means of Computational Fluid Dynamics-CFD vs Experiments?", Flow MeasInstrum, 1996, 7 (3-4), 161-71.
[22]     Larrarte, F., Jaumouillié, P., Joannis, C., "Computational Fluid Dynamics: an Aid for Designing the Instrumentation of Sewer Sections", In: 5rd International Conference on Innovative Technologies in Urban Storm Drainage; Novatech. Tome 1, 2004, pp 729-36.
[23]     Hrabak, D., Pry, l. K., Krejcik, J., Richardson, J., "Calibration of Flowmeters using FLOW- 3D Software", In: 3rd International Conference on Innovative Technologies in urban Storm Drainage, Novatech, 1998, pp 139-44.
[24]     Wilcox, D. C., "Turbulence Modeling for CFD", 2nd Ed., DCW Industries, Inc, 2000.
[25]     Olsen, N. B. R., "A Three-Dimensional Numerical Model for Simulation of Sediment Movements in Water Intakes with Moltiblock Option", Department of Hydraulic and Environmental Engineering, The Norwegian University of Science and Technology, 2006.