اثر پودر شیشه بازیافتی بر پتانسیل واگرایی و پارامترهای ژئوتکنیکی خاک‌های واگرا

نوع مقاله : مقاله کامل پژوهشی

نویسندگان

گروه مهندسی عمران، دانشکده مهندسی عمران و منابع زمین، دانشگاه آزاد اسلامی واحد تهران مرکزی

چکیده

وجود پدیده واگرایی در رس‌ها به‌دلیل پراکنده شدن و افزایش نیروی دافعه بین ذرات تحت شرایط خاصی، مشکلات زیادی را برای پروژه‌های عمرانی ایجاد می‌کند. با توجه به پیشرفت صنعت بازیافت مواد زائد و تأثیر آن‌ها در کاهش مشکلات زیست‌محیطی، در این پژوهش از پودر شیشه بازیافتی جهت بهسازی خاک‌های واگرا (Dispersive Soil) استفاده شده است. برای این منظور ترکیبات مختلفی از پودر شیشه به ­مقدار وزنی صفر، 2، 4، 6 و 8 درصد وزن خاک، به رس واگرا افزوده شد سپس نمونه‌ها تحت آزمایش‌های‌ مختلف ژئوتکنیکی‌ قرار گرفتند و میزان تغییرات پتانسیل واگرایی و همچنین بهبود ویژگی‌های ژئوتکنیکی خاک مورد ارزیابی قرار گرفت. نتایج نشان داد، با افزودن 8 درصد پودر شیشه به خاک، پتانسیل واگرایی به‌طور قابل ملاحظه‌ای کاهش می‌یابد. در این حالت طبق نتایج آزمایش هیدرومتری دوگانه، پتانسیل واگرایی حدود 7/71 درصد کاهش یافت و بر اساس نتایج آزمایش کرامب، خاک در رده‌ خاک‌های غیرواگرا قرار گرفت. همچنین نتایج آزمایش حدود اتربرگ نشان­ دهنده‌ کاهش شاخص خمیری نمونه‌ها است. بررسی نتایج آزمایش تراکم نشان داد با افزودن پودر شیشه به خاک پیوستگی مناسبی بین ذرات خاک به‌وجود آمده و حداکثر چگالی ‌خشک افزایش یافته است. بیشترین افزایش مقاومت فشاری محدود نشده در دوره‌ عمل‌آوری 7، 14 و 28 روزه در نمونه‌های اصلاح شده با 6 درصد پودر شیشه مشاهده شد. علت اصلی افزایش مقاومت، تغییر در ساختار خاک واگرا در اثر واکنش‌های پوزولانی (Pozzolanic reactions) و تشکیل ژل هیدرات سیلیکات کلسیم (Calcium silicate hydrate gel) بود که باعث ایجاد ساختاری متراکم‌تر و در نهایت منجربه بهبود ویژگی‌های مقاومتی خاک واگرا شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of Recycled Glass Powder on Dispersivity Potential and Geotechnical Parameters of Dispersive Soils

نویسندگان [English]

  • Mohammad Behboudi
  • Amir ali Zad
  • Maryam Yazdi
  • Amin Tohidi
Department of Civil Engineering, Faculty of Civil and Earth Resources Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
چکیده [English]

The presence of dispersion in clays affects the behavior of these types of soils. Experience has shown that not paying attention to this issue has created many problems for civil projects and even led to their destruction in some cases. In the past, it was recommended not to use divergent soils, but today, due to the expansion of civil projects and the possibility of dealing with these types of soils, it is very important to investigate their behavior and find appropriate methods of improvement. Ibrahim et al. (2021) conducted a laboratory study on clay with different percentages of glass powder. They concluded that the maximum dry density and unconfined compression strength of modified soils increase with the increase in glass powder ratio. Different combinations of glass powder and cement were evaluated for silt stabilization according to different curing times. The results have shown that the durability and compressive strength of the modified soil increases with increasing curing time period (Baldovino et al., 2020). Using recycled glass powder can be an effective way to improve the geotechnical properties of soils due to its economic nature and its role as a recycled material in reducing environmental problems. Even though the effect of using glass powder in improving the resistance properties of soils has been investigated by researchers, the use of glass powder and its effect in improving problematic soils, especially dispersive clays, have not been specifically studied. Therefore, the purpose of this research is to investigate the effect of adding recycled glass powder on reducing the dispersivity potential of clay soils and improving their geotechnical properties.

کلیدواژه‌ها [English]

  • Dispersive soil
  • Recycled glass powder
  • Soil stabilization
  • Double hydrometric test
  • Crumb test
ASTM_D2487, “Standard practice for classification of soils for engineering purposes”, Unified Soil Classification System, ASTM International, West Conshohocken, PA, 2017. https://doi.org/10.1520/D2487-17E01
ASTM_D4318, “Standard test methods for liquid limit, plastic limit, and plasticity index of soils”, ASTM International, West Conshohocken, PA, 2017. https://doi.org/10.1520/D4318-17E01
ASTM_D2166, “Standard test method for unconfined compressive strength of cohesive soil”, ASTM International, West Conshohocken, PA, 2016. https://doi.org/10.1520/D2166D2166M-16
ASTM_D698, “Standard test methods for laboratory compaction characteristics of soil using standard effort”, ASTM International, West Conshohocken, PA, 2014. https://doi.org/10.1520/D0698-12R21
ASTM_D854, “Standard test methods for specific gravity of soil solids by water pycnometer”, ASTM Internationa, West Conshohocken, PA, 2014. https://doi.org/0.1520/D0854-23
ASTM_D6572-00, “Standard test method for determining dispersive characteristics of clayey soils by crumb test”, ASTM Internationa, West Conshohocken, PA, 2014. https://doi.org/ 10.1520/D6572-21
ASTM_D4221-99, “Standard test method for dispersive characteristics of clay soil by double hydrometer”, ASTM Internationa, West Conshohocken, PA, 2014. https://doi.org/10.1520/D4221-11
Ashiq SZ, Akbar A, Farooq K, Mujtaba H, “Sustainable improvement in engineering behavior of siwalik clay using industrial waste glass powder as additive”, Case Studies in Construction Materials, 16, e00883, 2022. https://doi.org/10.1016/j.cscm.2022.e00883
Afrasiabian A, Salimi M, Movahedrad M, Vakili AH, “Assessing the impact of GBFS on mechanical behaviour and microstructure of soft clay”, International Journal of Geotechnical Engineering, 2021, 15, 327-337.
https://doi.org/10.1080/19386362.2019.1565393
Abbaslou H, Hadifard H, Ghanizadeh AR, “Effect of cations and anions on flocculation of dispersive clayey soils”, Heliyon, 6, e03462, 2020. https://doi.org/10.1016/j.cscm.2022.e00883
Arrieta Baldovino JDJ, Dos Santos Izzo R, Da Silva ÉR, Lundgren Rose J, “Sustainable use of recycled-glass powder in soil stabilization”, Journal of Materials in Civil Engineering, 2020, 32, 04020080. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003081
Abbasi N, Farjad A, Sepehri S, “The use of nanoclay particles for stabilization of dispersive clayey soils”, Geotechnical and Geological Engineering, 2018, 36, 327-335. https://doi.org/10.1007/s10706-017-0330-9
Arulrajah A, Piratheepan J, Aatheesan T, Bo M, “Geotechnical properties of recycled crushed brick in pavement applications”, Journal of Materials in Civil Engineering, 2011, 23, 1444-1452. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000319
Baldovino JJ, Izzo RL, Rose JL, Domingos MD, “Strength durability and microstructure of geopolymers based on recycled-glass powder waste and dolomitic lime for soil stabilization”, Construction and Building Materials, 2021, 271, 121874. https://doi.org/10.1016/j.conbuildmat.2020.121874
Blayi RA, Sherwani AFH, Ibrahim HH, Faraj RH, Daraei A, “Strength improvement of expansive soil by utilizing waste glass powder”, Case Studies in Construction Materials, 2020, 13, e00427. https://doi.org/10.1016/j.cscm.2020.e00427
Benny JR, Jolly J, Sebastian JM, Thomas M, “Effect of glass powder on engineering properties of clayey soil”, International Journal of Engineering Research and Technology, 2017, 6.
Bahmani SH, Huat BB, Asadi A, Farzadnia N, “Stabilization of residual soil using SiO2 nanoparticles and cement”, Construction and Building Materials, 2014, 64, 350-359. https://doi.org/10.1016/j.conbuildmat.2014.04.086
Bell F, Maud R, “Dispersive soils: a review from a South African perspective”, Quarterly Journal of Engineering Geology and Hydrogeology, 1994, 27, 195-210. https://doi.org/10.1144/GSL.QJEGH.1994.027.P3.02
Canakci H, Aram AL, Celik F, “Stabilization of clay with waste soda lime glass powder”, Procedia Engineering, 2016, 161, 600-605. https://doi.org/10.1016/j.proeng.2016.08.705
Disfani M, Arulrajah A, Bo M, Sivakugan N, “Environmental risks of using recycled crushed glass in road applications”, Journal of Cleaner Production, 2012, 20, 170-179. https://doi.org/10.1016/j.jclepro.2011.07.020
Eberemu AO, Edeh JE, Gbolokun A, “The geotechnical properties of lateritic soil treated with crushed glass cullet”, Advanced Materials Research, 2013, 20,170-179. https://doi.org/10.4028/www.scientific.net/AMR.824.21
Gidday BG, Mittal S, “Improving the characteristics of dispersive subgrade soils using lime”, Heliyon, 6, e03384, 2020.
Ibrahim HH, Mawlood YI, Alshkane YM, “Using waste glass powder for stabilizing high-plasticity clay in Erbil city-Iraq”, International Journal of Geotechnical Engineering, 2021, 15, 496-503. https://doi.org/10.1080/19386362.2019.1647644
Javed SA, Chakraborty S, “Effects of waste glass powder on subgrade soil improvement”, World Scientific News, 2020, 144, 30-42.
Keramatikerman M, Chegenizadeh A, Nikraz H, “Soil stabilisation using glass powder”, International Journal of Engineering Applied Sciences and Technology, 2020. https://doi.org/10.33564/IJEAST.2020.v04i11.060
Liu J, Chen P, Lu Z, Yao H, “Experimental Study on the Modification Mechanisms of Dispersive Soil Treated with Hydroxyl Aluminum”, Geofluids, 2022. https://doi.org/10.1155/2022/2680516
Mujtaba H, Khalid U, Farooq K, Elahi M, Rehman Z, Shahzad HM, “Sustainable utilization of powdered glass to improve the mechanical behavior of fat clay”, Journal of Civil Engineering, 2020, 24, 3628-3639. https://doi.org/10.1007/s12205-020-0159-2
Moravej S, Habibagahi G, Nikooee E, Niazi A, “Stabilization of dispersive soils by means of biological calcite precipitation”, Geoderma, 2018, 315, 130-137.
Ouhadi VR, Yong RN, Amiri M, Ouhadi MH, “Pozzolanic consolidation of stabilized soft clays”, Applied Clay Science, 2014, 95, 111-118.
Ouhadi V, Goodarzi A, “Assessment of the stability of a dispersive soil treated by alum”, Engineering Geology, 2006, 85, 91-101.
Sherard JL, Dunnigan LP, Decker RS, “Identification and nature of dispersive soils”, Journal of the Geotechnical Engineering Division, 1976, 102, 287-301. https://doi.org/10.1061/AJGEB6.0000256
Vakili AH, Shojaei SI, Salimi M, Bin Selamat MR, Farhadi MS, “Contact erosional behaviour of foundation of pavement embankment constructed with nanosilica-treated dispersive soils”, Soils and Foundations, 2020, 60, 167-178.